
Probabilistic Modeling of Forced Ignition of Alternative Jet Fuels

Yihao Tanga,∗, Malik Hassanalya,1, Venkat Ramana, Brandon Sforzob, Jerry Seitzmanc

aUniversity of Michigan, 500 S State St, Ann Arbor 48109, USA
bArgonne National Laboratory, 9700 S Cass Ave, Lemont 60439, USA
cGeorgia Institute of Technology, North Ave NW, Atlanta 30332, USA

Abstract

Fast and reliable high altitude re-ignition is a critical requirement for the development of alternative jet fuels (AJFs).
To achieve stable combustion, a spark kernel needs to transit in a partially or fully extinguished flow to develop a flame
front. Understanding the relight characteristics of the AJFs is complicated by the chaoticity of the turbulent flow and
variations in the spark properties. The focus of this study is the prediction of such characteristics by high-fidelity
simulations, with a specific focus on fuel composition effect on the ignition process. For this purpose, a previously
developed computational framework is applied, which utilizes high-fidelity LES simulations, a hybrid tabulation
approach for modeling forced ignition and detailed quantification of uncertainty resulting from initial and boundary
conditions to predict ignition probability. The method is applied to two alternative fuels (named C1 and C5) and
Jet-A fuel (named A2) under gaseous conditions. Results show that the mixing of kernel and fuel-air mixture is not
affected by the ignition process, but chemistry effects strongly dominate ignition probability. In particular, C1 exhibits
much lower ignition probability than the other two fuels, especially at lean operating conditions. More importantly,
this behavior is contradictory to ignition delay experiments which predict longer delay times for C5 compared to C1.
Comparisons with experiments show that the comprehensive modeling approach captures the ignition trends. Analysis
of kernel trajectories in composition space shows that the variations are caused by the relative effects of kernel mixing,
response to strain, and ignition properties of the fuel.
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1. Introduction

Alternative jet fuels (AJFs), from a variety of feed-
stocks and processes, are being considered as drop-in
replacements for existing and future aircraft, with min-
imal to no modification of their operations [1]. An im-
portant requirement for commercial use is the ability to
reliably and economically certify such fuels. One figure
of merit (FOM) for such certification is altitude relight
[2], where a combustor at high altitude is stabilized us-
ing a re-ignition procedure. In this regard, understand-
ing the relative role of fuel properties on ignition behav-
ior is important. From a testing and certification point of
view, a robust procedure for computationally predicting
ignition will provide a critical enabling tool [3]. The
focus of this work is to demonstrate a comprehensive
simulation procedure for estimating ignition probabil-
ity for a range of fuels and to understand the impact of
chemical properties on the ignition process.

Altitude relight is achieved using a spark source or
plasma ignitor, which introduces high enthalpy fluid,
and possibly ionized or free radical species into the
combustor. Due to the relatively cold conditions, a
highly viscous liquid injection will lead to poorly at-
omized droplet distribution, which will further compli-
cate the ignition process [4]. The focus here is on the
gas-phase mixing and chemical reactions that lead to the
formation of a stabilized flame. In general, the injected
kernel will undergo mixing with air and fuel, which will
reduce its temperature. Hence, ignition and flame stabi-
lization are highly sensitive to the local strain, mixing
rates, and fuel ignition properties [5, 6]. In particular,
variations in the turbulent flow field, as well as spark
energy changes will have a first-order impact on the suc-
cess or failure of the ignition process. Since turbulence
is chaotic, and its state is represented only by a high-
dimensional dynamical system [7, 8], precisely comput-
ing or measuring ignition is infeasible. As a result, even
in well-controlled experiments, ignition can only be de-
scribed probabilistically [9]. Hence, the main goal of
modeling and experimental validation is to obtain the
ignition probability for a set of operating conditions.

Modeling relight phenomenon requires two different
sets of models and tools: a) detailed modeling of the
complex interaction between the ignition source, fuel
thermochemical properties, and the background turbu-
lent flow; b) modeling the impact of stochastic pa-
rameters arising from the chaotic turbulent flow state
and spark ignition variations. Many previous studies
have addressed these challenges separately. To achieve
high-fidelity prediction of the forced ignition process,

one strategy is to apply imposed initial conditions (e.g.
chemical equilibrium or burnt composition) to either
detailed/reduced kinetic [10] or existing reduced-order
combustion models [11, 12]. In this approach, a small
flame front is assumed to exist, which is then allowed
to grow and stabilize. However, at conditions relevant
to relight, the initial kernel development might occur
at conditions that have very high strain rates that might
extinguish a diffusion-limited flame kernel. In this re-
gard, modeling energy deposition (ED) itself provides
an additional physical handle on the process. However,
the application of ED is often limited to full-chemistry
based simulations [13, 14] as existing turbulent combus-
tion models, such as flamelet-based approaches, rarely
include the underlying physics of forced ignition. To
quantify ignition probability, previous models mainly
use non-reacting flow statistics and presumed semi-
empirical relations between reaction and cold flow dy-
namics [15, 16].

Recently, a comprehensive modeling procedure that
includes detailed modeling of ignition, as well as the
uncertainties of the flow field, was developed by Tang
et al. [17, 18]. This approach uses a hybrid tabulation
method that takes into account the mixing-limited ker-
nel growth followed by the diffusion-reaction balance
of the flame development. The tabulation method was
combined with LES to form a forward model for pre-
dicting ignition outcome. This approach was then com-
bined with a polynomial chaos expansion based uncer-
tainty quantification approach (PCE-UQ) to estimate the
probability of ignition by treating the turbulent flow and
spark characteristics as uncertain. Similar to the work
of Triantafyllidis et al. [19], it was determined that for
methane-air systems, the spark energy plays a critical
role, but the turbulent flow can enable weaker spark ker-
nels to survive and lead to successful ignition.

For AJFs, the problem is complicated by the variabil-
ity in fuel composition. For instance, the H/C ratio of
test fuels can be in the range of 1.9-2.2 but with igni-
tion delay times that vary by a factor of 2 [2]. Full-scale
combustor tests and rig tests showed that while there is
a correlation with ignition delay measurements [20–22],
the behavior is highly dependent on the global equiva-
lence ratio as well as other operating conditions. How-
ever, there has been tremendous progress in the con-
struction of chemical kinetic mechanisms for these fu-
els [23–25], which provides a baseline for high-fidelity
computational modeling of the ignition process.

With this background, the focus of this work is to
use the detailed ignition modeling procedure of Tang
et al. [18] to predict ignition probability for different fu-
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els. The focus is on gas-phase ignition to remove the
effect of droplet evaporation on the process. The con-
ventional Jet-A fuel (A2) along with two AJFs (C1 and
C5, described below) that were studied in the National
Jet Fuel Combustion Program [2] are investigated. Each
fuel has a slightly different composition that alters its
thermochemical properties. The experimental config-
uration corresponding to the stratified jet flow facility
[26] is used. Details of the experimental configuration
are provided in Sec. 2. The computational framework
and simulation setup is explained in Sec. 3. Results of
the study are presented in Sec. 4 including comparisons
with experimental data.

2. Experimental configuration

The experimental configuration consists of a rectan-
gular domain with a sunken igniter at the bottom [27].
Figure 1 provides a side view at its mid-plane. For the
cases studied here, the igniter protrudes about 3.18 mm
into the flow. The flow is divided into two streams us-
ing a splitter plate upstream of the domain inlet (left of
Fig. 1). The main flow consists of the fuel mixed with
air at a prescribed equivalence ratio φ. The fuel injec-
tion is carried out sufficiently upstream of Fig. 1 such
that some level of mixing has been achieved [17]. How-
ever, the mixture is not homogeneous and there exist
spatial-temporal fluctuations of equivalence ratio in the
domain of interest. In addition to the main flow, a kernel
flow consisting of air issues below the splitter plate with
the same bulk velocity as the main flow.
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Figure 1: Schematic of the experimental setup. The cross-sectional
area is 54 mm × 85.7 mm. The contour is colored by equivalence
ratio under a global value of 0.8.

In the following discussion, the term spark refers to
the electric arc introduced during an igniter discharge,
whereas a kernel is defined as the resulting high energy
fluid pocket with no fuel present. An additional term
flame kernel is defined as the fluid pocket with a high
concentration of reaction products. After a spark dis-
charge, the thermal expansion within the confined ig-
niter cavity forces the kernel into the domain. The ker-
nel needs to first transit through the non-flammable ker-
nel flow before reaching the fuel-stratified reactive main
flow. The ignition succeeds/fails depending on the com-
petition between the kernel energy diffusion and the de-

velopment of an initial reaction towards a stable flame
front. In this process, several factors play a role includ-
ing the spark discharge, turbulence strain, fuel entrain-
ment, and stratification. Multiple experimental stud-
ies [26, 27] have been performed using this facility for a
range of operating conditions. More recently, numerical
studies [14, 17, 18] have also been carried out, predom-
inantly using methane-air mixtures.

C5

Jet-A (A2)

C1

JP-5 JP-8

Figure 2: Diagram of the AJFs compared with conventional jet fu-
els. Fuels studied here are highlighted by circles. The ignition delay
times [25, 28] are for fuel/air reactions at about 1000 K, 12 atm, and
unity equivalence ratio. The C5 data is obtained from simulation.

The inflow temperature of the main flow and the ker-
nel flow is set to 475 K. The fuels labeled C1, A2 and
C5 in [2, 27] are tested, where A2 refers Jet-A fuel,
while C1 and C5 are synthetic jet fuels designed for test-
ing. C1 is composed of 99% iso-paraffins whereas C5
is composed of 73% iso-paraffins and 27% trimethyl-
benzene. Large variations of chemical properties can
be found among the tested fuels, in particular, ignition
characteristics as shown in Fig. 2. Based on available
experiments, three global equivalence ratios of the main
flow are considered (φ = {0.6, 0.7, 0.8}) for each fuel
leading to a total of 9 cases.

3. Computational framework

The comprehensive modeling framework is based on
the procedure developed by the authors [18]. Figure 3
shows the simulation components. The main focus is on
the hybrid tabulation and the sampling procedure, which
together allow fuel variability effects to be included. Ig-
nition predictions are conducted using the large eddy
simulation (LES) approach. Only a brief description in
the context of AJFs is provided here to motivate discus-
sion. Readers are referred to [18] for details.

3.1. Hybrid tabulation for A2, C1, and C5 fuels

Tabulated chemistry is often used to include detailed
chemical kinetics while reducing computational ex-
pense [29–31]. However, when multiple flame regimes
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Figure 3: Diagram of the comprehensive computational framework
for ignition probability prediction.

are present in a system, strategies for incorporating
these regime changes are necessary [30]. In the hybrid
method used here, two different canonical flows (homo-
geneous reactor HR, diffusion flamelet FPVA) are used
to generate the lookup table as a function of progress
variable (C), mixture fraction (Z) and enthalpy (H). The
progress variable is defined as C = YH2O + YCO2 + YCO +

YH2 . In particular, the local total enthalpy, defined as
the sum of sensible and formation ethalpies, is used
to select the model regime, where the regime thresh-
olds are obtained systematically [18]. The look-up ta-
ble provides the source term of progress variable to the
LES solver based on the local filtered mixture fraction,
filtered progress variable, filtered enthalpy and filtered
variance.

The HyChem family of chemistry mechanisms [24,
25, 28, 32] is used to perform the HR and FPVA calcu-
lations. Figure 4 shows the tabulated reaction source for
the three fuels (see the caption for details). The spark
kernel is initialized as energy deposition (ED) of high
H with C = 0 that can propagate in a field of varying
equivalence ratio or mixture fraction Z. The reaction
rate obtained from HR calculations allows for the initi-
ation of reactions even starting from a zero C. As the
spark kernel moves through the flow field, entrainment
of the cold fuel-air mixture reduces the total enthalpy,
thereby transitioning to the FPVA region in the tabula-
tion. It can be seen that there is a high reaction source
ω̇C,A2 near C = 0 and a high H in Fig. 4, whereas clas-
sical FPVA tabulation, which only acts at low H, can-
not ignite a mixture with zero progress variable. C1
can have either a largely higher or lower reaction source
than A2 depending on the tabulation enthalpy, whereas
C5 shows a consistently higher reaction source than A2.
In this regard, C5 is more similar to A2 when com-
pared to C1. This is mainly because C5 is chemically

more similar to A2 [2], whereas C1 produces a different
combination of major pyrolysis from fuel decomposi-
tion [25]. The implications for the ignition probability
of these different fuels are discussed in Sec. 4.

3.2. Kernel injection and uncertainty in bound-
ary/initial conditions

To obtain ignition probability, the variability of the
ignition process based on inflow and initial conditions
is modeled. Here, the ignition kernel as well as the tur-
bulent initial flow are considered uncertain. The kernel
injection is modeled as a high-energy surface injection
on the lower boundary, using a space-time-dependent
Dirichlet boundary condition for the velocity and en-
thalpy fields. The enforced velocity profile is obtained
by ensuring that the kernel trajectory matches experi-
mental data. The enthalpy profile can be mapped from
the energy deposited, as detailed in [18]. The total
energy deposited is considered an uncertain parame-
ter to model the shot-to-shot variability of the igniter.
To model turbulence, the tabulation is incorporated into
LES using a presumed-PDF approach [18]. A dynamic
sub-grid-scale model [33] is applied to provide turbulent
viscosity. An in house low-Mach solver [34] is used to
perform this ensemble of LES. Prior to the main sim-
ulations, a cold flow LES is performed to construct a
database of turbulent flow fields of {U,Z}, which is later
applied to initialize the ignition simulations.

The ignition probability is estimated through a non-
intrusive polynomial chaos expansion (PCE) [35] ap-
proach, where samples from the distribution of kernel
energy and initial conditions are used to conduct mul-
tiple LES calculations. The ignition probability is esti-
mated as the average outcome of these runs. Details of
this procedure are explained in [18]. For these calcu-
lations, the shot-to-shot variability of the spark igniter
needs to be prescribed. Since the igniter used here is
the same as in [18], the spark characteristics are un-
changed and prescribed as a normal distribution with
a mean value of 1.24 J and standard deviation of 0.14
J. To achieve the same sampling accuracy as in [18], a
total of 120 LES simulations were performed for each
sampled case. The overall computational cost is about 1
million CPUh with a mesh with approximately 2 million
control volumes.

4. Results

Figure 5 shows typical ignition success/failure time-
sequences for each fuel considered, with identical ker-
nel energy and operating conditions while randomly
initialized turbulent states. Due to the pulsed-jet-in-
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Figure 4: Contour of of reaction source for A2 (middle) and the difference of C1 (left) and C5 (right) compared to A2 normalized as a percentage
of ω̇C,A2,max, plotted at equivalence ratio of 0.8. The black solid line marks the iso-value of zero difference between two compared tables.

crossflow type flow pattern, mixing is heavily domi-
nated by the generation of counter-rotating vortex pairs.
The time between 0.6 ∼ 1.5 ms is critical for igni-
tion success, where a small reaction zone is generated
through homogeneous ignition, leading to a ring-like
OH-isosurface forming, with the high reaction progress
variable concentrated at the bottom of the kernel and
stabilizing on the lee-side of the jet. As time progresses,
this high C region grows to encompass the entire OH
isosurface. While the failed ignition cases show sim-
ilar initial features (at 0.2 ms), the progress variable
does not increase significantly beyond this time. The
top view shows an asymmetry in the spanwise direction,
which is realization dependent, with some cases show-
ing stronger ignition fronts on the left lobe as opposed
to the right lobe. Moreover, there are appreciable dif-
ferences in the ignition structure for the three fuels. For
instance, C1 shows a larger OH isosurface compared to
C5 at 0.2 ms, but the kernel occupies a smaller volume
at later stages. C1 also shows regions of high progress
variable aligned with the core of the kernel, where the
two counter-rotating pairs meet, compared to C5, which
is similar in structure to A2. In the failed ignition case,
C5 exhibits an appreciable reaction even at later times,
but the kernel volume does not grow, indicating that the
homogeneous reactions have not transitioned to a rela-
tively low strain flame region. On the other hand, A2
and C1 fail similarly, with the progress variable dissi-
pating due to entrainment of the colder fuel-air mixture.

To quantitatively evaluate model performance, the
growth of the kernel area is compared with experimen-
tal data in Fig. 6. These simulations are conducted at
a different operating condition of φ = 1.5, since this is
the only experimental data available. The kernel growth
starts 1 − 2 ms after kernel injection, which compared
with Fig. 5 is when the transition from homogeneous re-
action to flame kernel occurs. For all fuels considered,
the model correctly predicts the ignition trends, with C1
showing the weakest growth rate. As pointed out ear-

lier, this arises from the slow oxidation of initial pyrol-
ysis products [25]. C5 shows a slightly weaker growth
rate in experiments and simulations compared to A2.

The ignition probabilities as a function of equivalence
ratio along with the estimated uncertainty are shown
in Fig. 7. For all three fuels, the ignition probability
compares well with experimental data. Ignition prob-
abilities over the range of lean equivalence ratios for
each fuel generally increased with increased fuel con-
tent. Since C5 exhibits significant reactivity even for
lower enthalpies, it is predicted to have the highest igni-
tion probability among the three fuels considered here.
Since C1 becomes less reactive at lower enthalpies com-
pared to A2/C5, the kernel quenches more easily due to
mixing. The plateau of ignition probability for C1 with
increasing equivalence ratio is an illustration of the limit
to the balance between the mixture reactivity and the
cooling effect of that mixture as it is entrained into the
kernel.

To understand the interaction between mixing and ig-
nition, the kernel composition is probed using fluid par-
ticles. The particles are initialized within the kernel
(H ≥ 2 × 106 J/kg) when its top edge reaches the main
flow. For each LES simulation, a total of 1200 particles
are tracked. The average of the particles trajectories is
re-plotted in the phase space of interest, as shown in
Fig. 8. In the left plot, the trajectories are interrogated
in the 3D phase space of H − φ − C. The projection
onto the H −φ space is identical for all cases, indicating
that mixing is nearly independent of the fuel. The differ-
ences between fuels are seen mainly in the variations of
progress variable as a function of time. From the time
histories of C and ω̇C , a spike of ω̇C occurs about 0.2
ms, which leads to the first increment of C. The reaction
is sharply suppressed after the initial spike, suggesting a
fall-off of reaction rate due to the entrainment of colder
flow. From Fig. 5, the time between 0.6 ∼ 1.5 ms is
critical for ignition success, which corresponds to the
time over which the reactions accelerate after the initial
reduction. During this period, the C5 fuel exhibits the
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Figure 5: Isosurface of OH mass fraction YOH = 5 × 10−4 (top) and YOH = 1 × 10−4 (bottom) colored by progress variable C ∼ [0, 0.075] obtained
from typical successful (top) /failed (bottom) ignition of C1 (left), A2 (middle) and C5 (right) fuel under φ = 0.8. Dashed line indicates splitter
plate height.

Figure 6: Kernel area growth history from 40 samples of success-
ful ignition at φ = 1.5. Experimental results [27] are obtained from
chemiluminescence images. Numerical results are transformed from
the flame kernel volume (C ≥ 0.275) by assuming a spherical shape.
Dash lines and error bars indicate a 95% confidence interval.

fastest restoration of ω̇C , while the C1 fuel exhibits a
restored value of ω̇C that is significantly lower than A2
and C5. After about 2 ms, the reaction rates reach a
plateau, indicating the transition from homogeneous re-
action to flame kernel. Figure 8 also shows the time his-
tories of two of the major pyrolysis species. The main
species is found to be C2H4 for A2 and C5, and i-C4H8
for C1. As i-C4H8 takes a much longer time than C2H4
to be oxidized [25], this chemical difference explains the
overall weaker ignition strength of the C1 fuel, although
pyrolysis products of C1 are generated at roughly the
same rate as that for C5.

5. Conclusions

A comprehensive simulation approach was used to
study forced ignition for three different fuels. The ap-
proach captures the experimental results and trends ac-
curately for both flame kernel growth and ignition prob-
ability. Overall, C1 fuel exhibits a considerably weaker
ignition process compared to A2 and C5. Fluid tra-
jectory analysis reveals that the ignition process itself
did not affect the fuel-air entrainment into the kernel.
Hence, the observed differences come mainly from the
interaction of the chemical processes with the particu-
lar trajectory in phase space introduced by the boundary
and initial conditions. Specifically, the restoration of re-
action rate from the initial reaction fall-off is critical for
successful ignitions. In this regard, C1 exhibits a lower
reaction rate the A2 and C5, possibly due to producing
pyrolysis products that do not oxidize easily.
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