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Abstract

The treatment of turbulent flows as finite-dimensional dynamical systems opens new
paths for modeling and development of reduced-order descriptions of such systems. For
certain types of dynamical systems, a property known as the inertial manifold (IM) exists,
allowing for the dynamics to be represented in a sub-space smaller than the entire state-space.
While the existence of an IM has not been shown for the three-dimensional Navier-Stokes
equations, it has been investigated for variations of the two-dimensional version and for
similar canonical systems such as the Kuramoto-Sivashinsky equation (KSE). Based on this
concept, a computational analysis of the use of IMs for modeling turbulent flows is conducted.
In particular, an approximate IM (AIM) is used where the flow is decomposed into resolved
and unresolved dynamics, similar to conventional large eddy simulation (LES). Instead of
the traditional approach to subfilter modeling, a dynamical systems approach is used to
obtain the closure terms. In the a priori estimation of the AIM approach for the Kuramoto-
Sivashinsky equation, it is shown that the small-scale dynamics are accurately reconstructed
even when using only a small number of resolved modes. Further, it is demonstrated that the
number of resolved variables needed for this reconstruction is dependent on the dimension
of the attractor.

Keywords: Approximate inertial manifold, Kuramoto-Sivashinsky equation, Homogeneous
isotropic turbulence, Reduced-order modeling

∗Corresponding author
Email address: akramrym@umich.edu (Maryam Akram)

Preprint submitted to Journal of Computational Physics August 23, 2022



1. Introduction

Turbulent flows found in aerodynamics, propulsion, and other energy conversion systems
pose an inherent computational challenge due to the broad range of temporal and spatial
scales as well as the interaction of multiple physical processes [1]. Over the last few decades,
a statistical approach to turbulence modeling has become the dominant framework, result-
ing in numerous practical tools including the Reynolds-Averaged Navier Stokes (RANS) and
large eddy simulation (LES) approaches (although the latter is not often treated that way
- rigorous mathematical basis is obtained only through a statistical notion [2, 3]). Such
computational tools are extremely useful for extracting spatial statistical measures such as
time-averaged velocity profiles, or higher-order moments such as RMS velocity. In general,
much of the focus has been on statistically-stationary flows, where temporal averages may
be used to estimate relevant statistical properties. However, within these applications men-
tioned above, there exists a range of problems for which assumptions regarding statistical
stationarity are not strictly valid. This includes transient problems such as inlet unstart in
scramjets [4, 5] or high-altitude reignition [6, 7], which deal with transition events driven
partially by the chaoticity in the flow but are ultimately influenced by uncertainty in op-
erating, boundary, or initial conditions. In these problems, a well-developed turbulent flow
may not be present and such an assumption may lead to errors in predicting the proba-
bility of such transition events. Since tails of the distribution may drive transition events,
there is a need to develop or explore techniques that do not explicitly rely on the statistical
representation of unresolved quantities [8, 9].

In this context, dynamical systems-based methods are particularly useful. Starting from
the mid-1980s, there has been growing recognition that treating an appropriately spatially-
discretized set of governing equations as a finite-dimensional dynamical system provides
access to properties about events that are otherwise difficult to assess using statistical tools.
This approach to modeling complex systems has been particularly successful in weather
prediction [10]. From a theoretical perspective, the focus has been on the structure of
the dynamical system in phase space, which is composed of the N -dimensional state space
defined by the degrees of freedom describing the discretized system. For instance, if a fluid
domain is discretized using ng grid points, and at each point nv variables are solved, the
state space dimension is N = ng × nv. Note that this estimation is dependent on the type
of numerical scheme used [11]. The spatial and temporal evolution of the turbulent flow can
then be expressed as a trajectory in this state space. In many systems dominated by coherent
structures, the long-term behavior of the system is dictated by dynamics confined to a low-
dimensional subspace of the full N -dimensional state space. All trajectories of the system
are attracted to this low-dimensional manifold, which contains the attractor of the system.
Constantin et al. [12] showed that the dimension of the attractor scales nonlinearly with
the Reynolds number of the flow. However, direct estimations of this attractor dimension
for turbulent flows using the Kaplan-Yorke conjecture [13] showed that attractor dimensions
are orders of magnitude lower than the number of degrees of freedom required by DNS
[14, 15, 16].

In this regard, it is interesting to note that one of the original premises for the use of
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dynamical systems is the development of reduced-order models, but this approach has been
fraught with challenges for the following reasons [17]. First, the possible high-dimensionality
of the attractor led to the conclusion that a highly reduced model cannot be easily deter-
mined [18]. Second, phenomenological approaches such as the intermittency model [19] did
not directly provide a path to other spatially extended systems. Finally, there have been
fundamental theoretical issues as to whether such reduced models can capture the chaoticity
of the flow [17]. In light of these challenges, the recent focus on data-driven sciences has
renewed interest in dynamical systems-based modeling of turbulent flows [20, 21, 22]. For
instance, techniques for describing turbulent boundary layers have been formulated from
these reduced-order modeling concepts [23].

In dissipative infinite-dimensional dynamical systems described by partial differential
equations (PDEs), the long-time behavior of trajectories can be studied in an invariant finite-
dimensional subset of phase space called the Inertial Manifold (IM) [24]. These manifolds,
when they exist, attract all trajectories of the system exponentially and therefore contain
the global attractor. The dynamics of the inertial manifold can be described by a finite-
dimensional system of ordinary differential equations (ODE), called the inertial form, which
completely describes the long-time dynamical behavior of the original infinite-dimensional
system. In this vein, one approach considered in this work is the direct approximation of
the inertial manifold [25, 26, 27, 28], where the dynamics of the system can be simplified
in a subspace of the state space, naturally leading to the construction of a reduced-order
model (ROM).

In the past, numerous studies have demonstrated the properties of inertial manifolds
for specific systems [24, 29, 30]. These include analysis of the stability of the manifolds
to perturbations [24], the exponential convergence of trajectories to the manifold [29], and
questions regarding the suitability of this manifold approximation for representing the evo-
lution of a dynamical system [29, 28]. These studies demonstrated that an IM is a reliable
framework for describing the long-time dynamics of the system. Current proofs on the
existence of the IM rely on the presence of arbitrarily large gaps in the spectrum of the
linear operator of the dynamical system [24]. The existence of an inertial manifold has been
proven for many dissipative PDEs [24, 31], describing different physical systems such as
reaction-diffusion systems [32, 33, 34, 35], hydrodynamic instabilities [36, 37] and interfacial
instabilities [32, 38, 24, 39]. However, it is important to recognize that these theoretical
foundations are based on strong restrictions [24, 31], and a rigorous extension to real-life
problems, such as an end application in multi-physics engineering processes, is a work in
progress. Whether the spectral gap condition is necessary for the existence of the IM is
still being explored, since other properties such as exponential tracking do not require this
property. As such, it might be possible to prove the existence of the inertial manifold with
weaker conditions [24].

Furthermore, these theoretical results cannot provide an explicit form for the inertial
manifold. As a result, an approximation of the inertial manifold is necessary, which leads
to the formulation of an approximate inertial manifold (AIM). AIMs can be developed to
approximate either the true inertial manifold [40, 29, 33] or a neighborhood of the global
attractor of the system [41, 42, 43, 27]. In this latter case, while the existence of an IM is
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unknown, AIM still describes a subset of the phase space which approximates a neighborhood
of the global attractor [28].

These studies demonstrated that the IM can be a powerful approach for developing
reduced-order models that describe the underlying dynamical system. An example is the
class of Galerkin-based IMs, also known as Galerkin manifolds [25, 28]. Here, the dynamics
of the system are tracked on an AIM. The main assumption is that the dynamics in the
complement space of the IM and full state-space are enslaved by the dynamics on the IM.
In other words, the motion in the complement space responds instantaneously to changes
in the trajectory on the AIM. While this assumption is justified by the theoretical studies
discussed above [24, 29, 43], their validity needs to be scrutinized more rigorously. Many
studies have been conducted on approximate inertial manifolds for dissipative systems, es-
timating their dimension and the rate of exponential convergence of dynamics to the AIM
merely for dimension reduction [28, 44]. The concept of ROMs based on inertial manifolds
for turbulence modeling was first introduced by Temam [43], where the interaction law be-
tween small and large scales guarantees the existence of an inertial manifold of the system.
This work was followed by AIM-inspired ROM algorithms developed for different systems,
including reaction-diffusion systems [24, 45], the Kuramoto-Sivashinsky equation [39, 29, 28]
and the two-dimensional Navier-Stokes equations [43, 25, 46, 47]. In a more recent work, an
AIM was developed as a suitable solution of the three-dimensional Navier-Stokes equations
in Fourier space, and its properties were analyzed [48]. While almost all of these studies
treat the governing equations using a Fourier-based spectral discretization, finite difference
and finite volume-based PDE discretizations have also been considered [49, 50].

Recently, data-driven approximate inertial manifolds have been constructed using ma-
chine learning and data assimilation techniques [51, 52, 53, 54]. These techniques can be
used to either determine the structure of the AIM model (including its dimension), or to
track the dynamics with prior knowledge about its structure. Furthermore, AIMs enable the
study of qualitatively different dynamical behaviors such as the transition to turbulence. For
instance, bifurcations of the Kuramoto-Sivashinsky equation have been studied over a range
of parameters using an AIM projected in two dimensions by symmetry reduction techniques
[55]. Here, the manifold was computed and visualized for different dynamical behaviors of
the system, which is intractable in the full state space.

Despite these extensive studies, there is limited computational exploration of AIMs and,
in particular, their suitability for modeling turbulent flows. The focus of this work is to
address this gap by systematically studying the AIM approach for a set of canonical systems.
Here, an approximate inertial manifold is constructed for the one-dimensional Kuramoto-
Sivashinsky equation and three-dimensional Navier-Stokes equations. The KSE has been
studied extensively by approximate inertial manifolds; however, the range of parameters
considered in previous works is such that the spatiotemporal chaotic behavior is not reached.
Here, the KSE is studied in the fully chaotic regime to assess different aspects of AIM
formulation. Also, the AIM approach is tested for homogeneous isotropic turbulence, which
is the first such study to the authors’ knowledge. As mentioned, an a priori study is
conducted to examine the validity of AIM assumptions and to obtain an estimation of
inertial manifold dimension. Accordingly, this study does not focus on model development,
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since the full dimensional dynamical system is solved for the a priori estimation. However,
the formulation provides a clear path to develop an AIM-based ROM as explained in Sec. 2.
Results of both case studies are provided in Sec. 3. Finally, concluding remarks and future
paths are discussed in Sec. 4.

2. Mathematical Formulation of AIM

Consider a set of partial differential equations that describe the evolution of any fluid
system. The variables of interest are given by the set ξ = {ξ1, ξ2, · · · , ξnv}, and the equations
are written as

∂ξ

∂t
+∇ · N (ξ) +∇ · Gξ + S(ξ) = 0, (1)

where N is a nonlinear operator, G is a linear operator, and S is a volumetric source term.
In the discussion below, this last term will be set to zero without loss of generality. In the
context of non-reacting flows, ξ will include all transported variables such as momentum
or energy. The nonlinear term G is typically the source of the multi-scale nature of this
problem, producing a spectrum of length scales. Since the range of scales is dependent on
some intrinsic parameter (such as Reynolds number), these equations are computationally
intractable for any practical flow, and require some form of modeling that reduces the range
of scales.

In this work, the modeling approach is based on a discretized form of Eq. 1 in an N -
dimensional state space, where v ∈ Rng×nv is the discrete vector of variables such that
D : ξ → v, with D being the discretization operation. In this discretized form, the governing
equations can be written as

dv

dt
+Av + F(v) = 0, v(t = 0) = v0, (2)

where v is the discrete set of variables, A is the discretized linear term, and F is the
discretized nonlinear term. In order to apply the inertial manifold approach, A is taken to
be a linear, self-adjoint operator defined on the Hilbert space H. Let S(t) : v(0)→ v(t) be
the semigroup of operators defining the solutions of Eq. 2. A subset M ⊆ H is an inertial
manifold if it satisfies the following properties [24]:

1. M is a finite dimensional Lipschitz manifold,
2. M is invariant, i.e., S(t)M⊆M. for all t ≥ 0,
3. M attracts exponentially all solutions of Eq. 2, i.e.,

lim
t→∞

dist (S(t)v0,M) = 0, (3)

for every v0 ∈ H.

In order to construct the reduced-order description, an orthogonal projection operator
P is defined which splits the state-space into resolved (u) and unresolved (w) components:

u = Pv, w = (I − P )v = Qv, v = (u,w), (4)
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where Q = I−P , is the complement of the projection operation, and it maps its operand to
the null-space of the projection operator P . Formally, IMs are realized as graphs of functions
Φ : PH → QH. For the form of the discretized system considered here (Eq. 2), the goal is
to describe the dynamics in terms of u alone. Hence, the dimension of the projected space
should be comparable to the dimension of the IM. Since A−1 is compact and self-adjoint, the
set of eigenvectors of A form an orthonormal eigenbasis for the Hilbert space H. Eigenvalues
of A satisfy:

0 < λ1 ≤ λ2 ≤ . . . , λj →∞ as j →∞ (5)

The main assumption of the inertial manifold theory is the existence of a relatively large
gap in the spectrum of the linear operator, such that the dimension of the inertial manifold
(m) can be determined by comparison between the largest eigenvalue (λm) of the linear
operator projected onto the resolved subspace (A|PH) and the smallest eigenvalue (λm+1)
of the linear operator projected onto the unresolved subspace (A|QH) [24, 56]. Current
theories on the existence of the inertial manifold strictly require a spectral gap, delineating
time scales associated with the unresolved modes from those of the resolved modes; however,
not all of the properties of the IM require the spectral gap condition to be satisfied. It might
be possible to develop a theory of inertial manifolds which uses weaker conditions [24, 35].

Similar to prior formulations [24, 43], P is taken to be the projection onto the space
formed by the firstm eigenfunctions of the linear operatorA, spanning anm×nv-dimensional
space, Rm×nv . In this sense, resolved dynamics of the flow lie in this m × nv-dimensional
space, where m << ng. Such a decomposition of the state space into resolved and unresolved
subspaces can be achieved by any set of orthogonal eigenbases of the full-dimensional state
space. The dissipative linear operator, with a set of positive ascending eigenvalues, provides
a clear path for decomposition into the resolved and unresolved subspaces. However, find-
ing the eigenvalues of all of the linear and nonlinear terms of the governing equation can
give more information about dominant dynamics. This method is more expensive compu-
tationally since the Jacobian of the dynamical system needs to be computed at each time
step. Several reduced-order mechanisms are developed based on such decomposition, such
as intrinsic low dimensional manifolds [57] and the computational singular perturbation
[58, 59].

The goal is to describe the dynamical features of the flow in this lower-dimensional
manifold instead of the full-dimensional system. Applying the projection operator to the
discrete governing equations, the evolution equations for the resolved and unresolved fields
can be obtained as

du

dt
+Au+ PF(v) = 0, u(t = 0) = Pv0, (6)

and
dw

dt
+Aw +QF(v) = 0, w(t = 0) = Qv0, (7)

where v0 is the initial condition associated with the full state-space representation.
The main challenge in solving the resolved-scales equation is in the projected nonlinear

term PF(v), which cannot be described using only u. The goal is to estimate w given only
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information of u and compute this nonlinear term. This is the typical closure challenge in
turbulence modeling. The approach here is to leverage the unresolved-scales equation by
utilizing the IM approximation: the dynamics of u directly determine the dynamics of w.
In other words, the components of w adjust to changes in u instantaneously. This modeling
ansatz needs to be tested and will be discussed further in the example cases in the following
sections. With the approximation dw/dt = 0 [41]:

Aw = −QF(v), (8)

which results in
w = −A−1QF(u,w). (9)

The above nonlinear equation can be iterated based on an arbitrary initial guess to obtain
a converged solution for w. The solution at iteration j is denoted by wj, with w0 = 0:

wj = −A−1QF(u,wj−1). (10)

In a majority of prior studies, only the first iteration is used [43, 46]. As a result, j is limited
to 1 in this work, unless specified otherwise.

In this a priori study, the resolved modes u are obtained from direct computation of
the full order system (direct numerical simulation or DNS), and the unresolved modes are
approximated given the resolved modes. This does not directly provide a ROM, but an
approach towards developing such a formulation is illuminated. With this in mind, the
following section describes the application of this approach to two canonical flows, namely
the Kuramoto-Sivashinsky equation (KSE) and homogeneous isotropic turbulence (HIT).

3. Application of AIM to canonical problems

3.1. Kuramoto-Sivashinsky equation-based spatiotemporal chaos

The KSE has been used as a surrogate for studying turbulence and interfacial instabilities
[60, 61, 62]. Note that the existence of an IM has been proven for this system [39, 63]. The
KSE is a convection-diffusion equation written as:

∂ξ

∂t
+ ξ

∂ξ

∂x
+
∂2ξ

∂x2
+ µ

∂4ξ

∂x4
= 0 , x ∈ R, t > 0

ξ(x, t) = ξ(x+ L, t); ξ(x, 0) = g(x),
(11)

where t is time, x is physical space, ξ is the solution of the equation, L is the spatial period,
and µ is viscosity. The dynamics of the system are controlled by two parameters: L and µ.
It is then possible to define a Reynolds number type parameter as Re = L

2π
√
µ

[64], where

the extent of spatiotemporal chaos is determined similar to the conventional use of this
non-dimensional number. The range of scales in the system can be modified by changing
Re. Here, viscosity is kept constant at µ = 0.001, and the length of the domain is varied in
the range of [10π, 64π]. The AIM will be investigated for this range of parameters.
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In this work, spectral discretization is used, and the projection operator is defined in
the spectral domain. Note that in this representation, the diffusion operator satisfies the
properties needed for A (i.e., linear, unbounded, and self-adjoint). v is defined as the Fourier
transform of ξ:

v(k, t) = F (ξ(x, t)) =
1

L

∫ L

0

ξ(x, t)e−iqkxdx, (12)

where qk = 2πk
L

, k ∈ Z, and F is Fourier transform. In discretized form, nF Fourier
coefficients are used for v, denoted by vk with k ∈ [−nF/2 + 1, nF/2]. The governing
equation of the system in spectral space is obtained as a Galerkin projection of the Fourier
modes:

d

dt
vk + (µq4k − q2k)vk +

iqk
2

∑
1 ≤ |l|≤ nF /2

1 ≤ |k − l|≤ nF /2

vlvk−l = 0. (13)

Fourier modes with large wavenumbers have low amplitude and can be neglected at suffi-
ciently large nF . The discretized KSE, truncated at sufficiently large nF , is solved using the
exponential time difference fourth order Runge-Kutta method (ETDRK4) [65, 66] with stan-
dard 3/2 de-aliasing to generate DNS data. In the IM formulation, Eq. 13 can be arranged
as Eq. 2 with the linear operator A = µq4k and F(v) = −q2kvk + i qk

2

∑
vlvk−l or their physical

space analog. The KSE has two linear operators, but only one of them (µq4k) satisfies prop-
erties required by the theory of inertial manifolds. While the second-derivative term (−q2k)
is responsible for instability at large scales, the fourth-derivative term provides damping at
the small scales. In the spectral space, the resolved variables are u = (v−m/2, ..., vm/2), and
the unresolved variables (w) are approximated with only one iteration by

wk = −A−1Q(F(u))k = µ−1q−4k

(
− i

2
qk

∑
1 ≤ |l|≤ m/2,

1 ≤ |k − l|≤ m/2

(u)l(u)k−l

)
. (14)

The second-derivative term does not appear in Eq. 14 for j = 1 in Eq. 10. The initial
condition of the dynamical system in physical space (Eq. 11) is g(x) = sin(x)(1 + cos(x)).
For the range of domain sizes considered here, this computation can become expensive.
The required grid resolution is provided in Tab. 1. For this reason, an MPI-based domain
decomposition approach is used to solve the system on distributed memory computers.

3.1.1. Numerical stability requirements

The KSE exhibits spatiotemporal chaos, where infinitesimal perturbations exponentially
grow over time. Therefore, the numerical resolution (in time and space) used to resolve the
system has a significant impact on the accuracy and stability of the solution. The range
of scales found in the system increases with the length of the domain. As a result, the
number of Fourier modes needed to resolve the dynamics also changes. Figure 1 shows
a typical x − t plot of the solution ξ for a Reynolds number 316.23 using 4096 Fourier
modes. Initially, spatial variations retain the physical structure of the initial conditions. At
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t > 0.15, transition to a chaotic regime is observed. However, with 1024 Fourier modes for
the same Reynolds number, the solution becomes unstable after transition to the chaotic
regime. These simulations with coarser resolution represent truncated systems without any
subgrid model.

As expected, when sufficient spatial resolution is not available, the energy dissipation
is not fully captured and there can be a pile-up of energy at the small-scales, which leads
to numerical instability. Since one of the objectives of this work is to determine whether
an AIM approximation is useful as a modeling path, the errors associated with the AIM
process will be compared to those of the minimum resolution needed to evolve the governing
equations stably. In other words, if the AIM approach shows good accuracy when using a
smaller number of Fourier modes, it will provide a computational benefit when compared to
the minimum resolution needed to solve the equations stably. Table 1 shows the required
minimum resolution for the stability of the solution for different Re values as well as the
maximum resolution used in the high fidelity solution of this study. This high fidelity
simulation is called DNS in this study, since the governing equations are solved without any
modeling. When discussing the AIM resolution (m in Sec. 2), the minimum resolution will
be used as a reference.

Case Length of domain Re Nmin NDNS

A 10π 158.11 1024 2048
B 20π 316.23 2048 4096
C 36π 569.21 4096 8192
D 64π 1011.93 8192 16384

Table 1: Grid convergence study for different Re numbers. Nmin denotes the minimum number of modes
required to obtain a stable solution. NDNS is the number of modes used to obtain the high fidelity solution.

9



Figure 1: Solution of the KSE, ξ(x, t), for Re = 316.23, NDNS = 4096. Only part of the computational
domain is shown.

3.1.2. Validity of AIM formulation

One of the key assumptions in the AIM method is that the linear operator dominates and
controls the unresolved dynamics. In the KSE, the linear operator is dissipative in nature.
If dissipation dominates the unresolved dynamics, the energy of high wavenumber modes
is exponentially dissipative and asymptotically small. This fact reinforces the notion that
long-time dynamics of the system lie in the inertial manifold. This assumption is evaluated
using the energy budget for case A in Tab. 1. Figure 2 shows the energy budget for different
quantities in the unresolved dynamics, each plotted using an AIM resolution of m = 158,
which is equal to the number of linearly unstable modes in this case. The number of linearly
unstable modes is found by linearizing Eq. 13 at its trivial solution and computing the
eigenvalues of its linear operator. Eigenvalues with positive real part correspond to the
linearly unstable modes. In this case, the eigenvalues are: λk = q2k(1 − µq2k), which gives
[Re] eigenvalues with positive real part, where [Re] is the integer part of Re.

To obtain the linear and nonlinear terms in Eqs. 6 and 7, the solution v from the high
fidelity computation is projected onto the u and w spaces using the operators P and Q =
I−P , respectively. For the KSE, P is the projector onto the span of the first m eigenvectors
of the linear operator A = µq4k. The nonlinear operator (F), discussed in Sec. 3.1 (Eq. 13),
is computed using the DNS data and is then projected onto the resolved and unresolved
spaces.

The energy budget, defined as the magnitude of each term for the evolution in spectral
space, is shown in Figs. 2 and 3. For the unresolved scales, the magnitude of the linear term
is comparable to that of the nonlinear term. This trend holds for the first unresolved mode
as well as the average of all the unresolved modes. The linear operator gains more energy
at the small scales because of the strong dissipative nature of the KSE. On the other hand,
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for the resolved modes (shown in Fig. 3), the nonlinear term is substantial compared to the
linear term, which is consistent with the chaotic nature of this system. It is also seen that
the average of all resolved terms shows that both operators are of roughly similar magnitude.
This is because the modes close to the cut-off wavenumber (i.e., close to m = 158) have a
robust linear term (as seen for the first unresolved mode). As m is increased, the unresolved
modes will be increasingly dominated by the linear operator.

Figure 2: Energy budget for the unresolved dynamics (Eq. 7) of the KSE for Re = 158.11, m = 158. Linear
operator (Aw): , nonlinear operator (QF(u,w)): . Left: energy budget of the first unresolved mode,
right: average energy budget of the unresolved dynamics.

Figure 3: Energy budget for the resolved dynamics (Eq. 6) of the KSE for Re = 158.11, m = 158. Linear
operator (Au): , nonlinear operator (PF(u,w)): . Left: energy budget of the first resolved mode, right:
average energy budget of the resolved dynamics.

3.1.3. Effect of resolution

The primary AIM outcome is the determination of the unresolved dynamics based on the
evolution of the resolved scales. To understand the accuracy of this approach, an a priori
analysis is conducted. As mentioned in Sec. 1, current theories can prove the existence of IM
for some dissipative systems, although they cannot determine its dimension and topology
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explicitly. Therefore, an estimation of the inertial manifold is essential. As the IM attracts
all trajectories exponentially, its approximation must contain a thin neighborhood of the
IM. Therefore, m should be larger than the dimension of the IM. However, obtaining this
dimension is a computational challenge in itself, and is currently infeasible [67, 14, 11, 15].
Previous studies have estimated the dimension of IM for the KSE and provided an upper-
bound scaling with different powers of Re [39, 28]. Here, the relation of the AIM accuracy
to this dimension estimate is assessed.

For each Re, different resolutions of AIM are considered, and unresolved quantities are
approximated by Eq. 14. They are then compared against the high fidelity solution of the
dynamical system in spectral space. The results are first shown in Fig. 4, where the real part
of the first unresolved mode is plotted. It is seen that as m increases, the AIM assumption
becomes increasingly accurate, with the predicted field accurately tracking the exact quantity
in time. Note that the number of resolved modes m is well below the minimum required to
reach stability with a truncated system (Tab. 1).

Figure 5 shows the evolution of the average of unresolved quantities with time. It is
seen that, similar to the first unresolved mode, increasing the approximation dimension (m)
increases the accuracy of the results. However, the improvement is not as marked as for
the first unresolved mode. From these figures, it is concluded that the modes closest to the
resolved space are more responsive to the resolved-scale dynamics. This trend is shown more
clearly in Sec. 3.1.4.

(a) Re = 1011.93, m = 1024 (b) Re = 1011.93, m = 2048

Figure 4: Effect of the AIM resolution on approximation of the dominant unresolved mode (wm+1), DNS: ,
AIM: .
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(a) Re = 1011.93, m = 1024 (b) Re = 1011.93, m = 2048

Figure 5: Effect of the AIM resolution on approximation of the average of unresolved dynamics (w̄) , DNS: ,
AIM: .

Even though the AIM estimation degrades at higher wavenumbers, the overall perfor-
mance improves with increasing AIM resolution. Figure 6 shows the L2-norm of the differ-
ence between the w field obtained using AIM (Eq. 14) and the unresolved sub-space of the
full system solution (Eq. 13), expressed in the spectral space as a function of AIM resolution
over the range of Re numbers. Regardless of the Re number used, after an initial reduction,
the error appears to plateau before decreasing further. Incidentally, the switch from the
plateau to the second convergence branch occurs when AIM resolution m exceeds the bifur-
cation parameter, Re. Given that prior work has shown that the dimension of the inertial
manifold scales as Re [39, 28], this result suggests that strong convergence properties can
be obtained for resolutions higher than the dimension of the inertial manifold. At low m,
it is postulated that the initial error reduction occurs primarily because the resolved modes
increasingly capture the key macroscopic features. A constant rate of convergence is not
expected due to the highly nonlinear nature of the resolved scales dynamics [68].
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Figure 6: Effect of AIM resolution on estimation of unresolved dynamics ||wDNS − wAIM ||2. Re = 158.11:
, Re = 316.23: , Re = 569.21: , Re = 1011.93: . Vertical dashed line marks m = [Re].

While the comparisons so far have been in spectral space, it is illustrative to consider
the physical space features captured by the AIM model. For this purpose, two different
resolutions of the AIM are considered for Re = 158.11. Figures 7 and 8 show the different
fields for the AIM resolutions m = 128 and m = 256, corresponding to the full-dimensional
reconstructed field and the unresolved dynamics, respectively. For a clearer representation
of the small scales, only part of the simulation domain is shown for the chaotic regime
(t > 0.15). Before the transition to this regime, the dynamics are laminar and captured by
large wavelength resolved-scale modes.

Figure 7 compares the AIM-reconstructed fields (F−1(u,wAIM)) by two different AIM
resolutions against the high fidelity (DNS) solution. The reconstructed field retains the
features of the full field, even at the lower resolutions considered. For m = 256, the AIM-
reconstructed field appears to retain most of the details of the flow qualitatively. However,
these are full-dimensional fields reconstructed from the AIM approximation and resolved
fields. In Fig. 8, comparison of the exact and approximated unresolved fields is revealing
of the effect of AIM dimension in approximating the unresolved modes. In particular, it is
seen that the extrema in the reconstructed field are smaller in magnitude in comparison to
those of the original field. While this improves with the resolution, there remain differences
in the spatiotemporal structures at m = 256.
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Figure 7: KSE solution in physical space for Re = 158.11, ng = 2048. Left: full-dimensional solution
(ξ(x, t)) obtained by DNS; middle: reconstructed solution by AIM (F−1(u,wAIM )) for m = 128; right:
reconstructed solution by AIM (F−1(u,wAIM )) for m = 256.

Figure 8: Unresolved dynamics of the KSE solution in physical space for Re = 158.11, ng = 2048; Top left:
DNS solution (Qξ(x, t)) for m = 128, top right: AIM estimation by Eq. 14 for m = 128, bottom left: DNS
solution (Qξ(x, t)) for m = 256 and bottom right: AIM estimation by Eq. 14 for m = 256.

3.1.4. Accuracy of statistical features

While the focus so far has been on the ability of AIM to capture the dynamics of the
underlying system, it is essential to understand the impact on the statistical properties of the
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system. For this purpose, the two-point spatial correlation (R(r, t) = 〈v(x, t)v(x + r, t)〉) is
computed for the DNS and AIM-reconstructed fields. Figure 9 (left) shows the convergence
of AIM solution to the exact solution by increasing dimension of the AIM. Although the
highest AIM resolution, (m), is significantly lower than the DNS resolution and the mini-
mum resolution required for stability, it can capture the exact two-point correlation fairly
accurately. Figure 10 shows the energy spectrum plotted in spectral space. Discrepancies in
the modeled spectrum can be observed, especially at high wavenumbers. Nevertheless, AIM
captures the energy of the largest unresolved scales quite accurately (for |k| ∈ [50, 100]),
indicating that their dynamics are indeed enslaved to the largest resolved scales. However,
the small-scales appear to have lower energy in the AIM reconstruction, indicating that the
approach to the manifold is not purely determined by the scale-specific time-scale, which
tends to be smaller at larger wavenumbers. This behavior is also seen in the spatial correla-
tions of the unresolved dynamics alone, w. Figure 9 (right) shows that for larger separations
(r/L > 0.05) the two-point correlation is well represented by the AIM reconstruction of the
small-scales, while the amplitude of these correlations is not captured at shorter separation
distances.

Figure 9: Spatial two-point correlation of velocity field in physical space for Re = 158.11. Left: convergence
to DNS by increasing AIM resolution (m) obtained for full vector of variables (u,w); DNS: ; AIM, m = 64:

; AIM, m = 128: ; AIM, m = 256: . Right: Spatial-correlation of unresolved space (w) for m = 256.
DNS: ; AIM: . In both plots, all values are normalized by the corresponding spatial correlation at r = 0
obtained by DNS.
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Figure 10: Energy spectrum for Re = 158.11, m = 256. DNS: ; AIM: ; exact subgrid spectrum: ;
subgrid spectrum approximated by AIM: . The vertical dashed line marks the cut-off wave number.

The energy spectrum and the two-point correlation show that the AIM approximation
deteriorates at the smallest scales in the unresolved dynamics. However, the approximation
can be improved by seeking the fixed-point solution of Eq. 10 with more iterations. Figure 11
(left) shows that with j = 3 in Eq. 10, the AIM approximation has improved considerably at
higher wavenumbers, and the energy spectrum is reconstructed at the smallest scales. The
rate of convergence is controlled by the quadratic nonlinearity in Eq. 10 which correlates
different scales. Figure 11 (right) compares the normalized error of the energy spectrum of
the unresolved modes obtained using different numbers of iterations. At each iteration, the
number of unresolved modes correlated with the resolved dynamics is doubled because of the
quadratic nonlinearity. By considering more iterations, the information in the resolved and
larger unresolved scales is transferred to the smaller scales, which improves the performance
of the approximation. Since the dimension of the unresolved dynamics is finite, increasing
the number of iterations after some point does not improve the approximation anymore. In
the discussions above, only the j = 1 solution is considered, since this provides a first order
approximation of the unresolved dynamics.
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Figure 11: Left: Energy spectrum for Re = 158.11, m = 256. Unresolved dynamics are reconstructed by
Eq. 10 with j = 3; DNS: , AIM: . Right: Relative error in energy spectrum of the unresolved dynamics
for Re = 158.11, m = 256, when unresolved dynamics are approximated by Eq. 10 with j = 1: , j = 2:
and j = 3: . Vertical dashed lines mark wavenumbers km, 2km and 4km.

3.2. Homogeneous isotropic turbulence

In this section, the performance of the AIM approximation is assessed a priori using
a canonical turbulent flow configuration in a domain of 2π × 2π × 2πm. This problem
represents a jump in complexity for two reasons: 1) the dimensionality of the discretized
system is increased by orders of magnitude; 2) the existence of an IM has not yet been
proven for the Navier-Stokes equations [24].

Here, the flow is considered incompressible, and the three-dimensional Navier-Stokes
equations govern the state of the system:

∂ξi
∂t

+ ξj
∂ξi
∂xj

= −1

ρ

∂p

∂xi
+ µ

∂

∂xj
(
∂ξi
∂xj

) +Bξi

∂ξi
∂xi

= 0,

(15)

where ξi is the velocity component in the ith direction, p is the hydrodynamic pressure, µ
is the kinematic viscosity and ρ is the density. Statistical stationarity is achieved by using
a turbulent forcing technique that compensates for the viscous dissipation. A linear forcing
scheme is used with a uniform constant coefficient B [69, 70]. Similar to the procedure

used in the KSE, Eq. 15 is expressed in Fourier space as: ξi =
∑

~k vi(
~k, t)e

~k.~x. A Galerkin
projection of the equation leads to a system of ODEs that govern the evolution of the Fourier
coefficients vi(~k, t):

d

dt
vi(~k, t) + µ|k|2vi(~k, t)−Bvi(~k, t) + ki

~f.~k

|k|2
− fi = 0

fi = −F (
∂ξiξj
∂xj

)~k,

(16)
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which is solved in a cube of side length 2π with periodic boundary conditions. Similar to
the KSE, a pseudo-spectral method with dealiasing is used for the non-linear term. Exact
time integration is used for the linear viscous term, and second-order Runge Kutta (RK2)
is used for the other terms. Since small incompressibility errors can grow fast in a spectral
formulation, it is necessary to remove the divergence error at every time step [71, 72]. At
each time step, the velocity field is projected on the divergence-free space following the
procedure explained in [71, App. A1]. Equation 16 can be rearranged as Eq. 2 using the
linear operator A = µ|k|2, with F(v) containing all other terms. It should be noted that the
constant forcing term is not included in the linear operator since it does not satisfy properties
required by the theory of inertial manifolds (Sec. 2). The projection operator that defines the
resolved scales is parameterized using a three-dimensional wavenumber kthreshold such that
all the modes with wave numbers

√
k2x + k2y + k2z ≤ kthreshold are included in the resolved

space. The number of modes satisfying this requirement is the dimension of AIM, (m). For
example, kthreshold = 2 leads to m = 23. In the following sections, different values of kthreshold
are used to examine the convergence properties of AIM.

With the AIM approximation, the unresolved variables with wavenumber ~k can be ap-
proximated as:

w~k = −(µ|k|2)−1QF(u), (17)

where u is the resolved velocity vector. As mentioned in Sec. 2, the unresolved dynamics
can be approximated by solving Eq. 10 with a fixed-point iterative method. It can be shown
that the AIM approximation satisfies continuity conservation. If the initial guess of the sub-
grid field is precisely divergence free, regardless of the iterative method, this approximation
preserves this condition in the unresolved dynamics. However, if the initial guess of the
unresolved velocity field does not satisfy the continuity equation, its residual error will grow
exponentially. For the velocity vector corresponding to wavenumber ~k with initial guess w0

and j iterations in Eq. 10:
5 .w0

~k
= ε,

5 .wj
~k

= ((µ|k|2)−1B)jε,
(18)

where ε is the residual of the continuity equation for the initial guess of the velocity vec-
tor. At each unresolved mode, the error grows at a rate proportional to the inverse of the
wavenumber. Hence, the smallest unresolved scale (close to |~k|= kthreshold) has the highest
growth rate.

3.2.1. HIT solution and numerical specifications

Four different spatial resolutions are used to investigate the accuracy of the AIM method-
ology for different Reynolds numbers. The simulation details are provided in Tab. 2. The
Taylor microscale Reynolds number Reλ = u′λg

µ
and the Kolmogorov length scale η = (µ

3

ε
)1/4

are monitored over the initialization time to make sure the turbulent field is fully developed,
where λg is computed as

√
15µ

ε
u′ [1, Chap. 6], u′ is the fluctuating velocity and ε is the dis-

sipation of turbulent kinetic energy. At each resolution, the flow statistics are monitored for
approximately 1000 eddy turnover times (τ) to ensure a fully-developed, forced, statistically
stationary flow field. The long transient time is chosen to make sure that the forcing method

19



does not lead to instability and energy pile-up at small scales. The AIM investigation period
is started when the flow becomes statistically stationary. Figure 12 shows one snapshot of
the magnitude of vorticity vector for different grid resolutions.

Case Grid Resolution Reλ η/∆x Forcing coefficient (B)

I 323 15.7 1.22 0.1370
II 643 27.1 1.12 0.3275
III 1283 39.34 1.18 0.825
IV 2563 51.67 1.36 1.8

Table 2: Numerical setup for HIT.

Figure 12: Instantaneous magnitude of vorticity vector obtained for different grid resolutions, left: ng = 643,
middle: ng = 1283 and right: ng = 2563.

3.2.2. Validity of AIM approximations

As discussed in Sec. 3.1.2 for the KSE, the key assumption in the AIM method is that the
linear operator dominates the unresolved dynamics. In Navier-Stokes equations, the linear
operator is the Stokes operator. Even though this operator is dissipative, and it possesses the
required properties for AIM analysis (Sec. 2), it does not satisfy the spectral gap condition
enforced by available theories on the existence of IM [24]. However, the existence of IM for
Navier-Stokes equations might be proven by theories with more relaxed prerequisites. If the
linear operator is dominant in the unresolved dynamics, these dynamics are asymptotically
small, and the long-term dynamics of the system lie in the IM. In order to compare the
prevailing effect of the linear term in the resolved and unresolved sub-spaces, the variation
of the energy budget of the linear and nonlinear terms of the governing equations (Eqs. 6 and
7) are monitored over several eddy turnover times for case II in Tab. 2 with kthreshold = 8.

The linear and nonlinear terms, discussed in Sec. 3.2, are obtained from the DNS com-
putation, where the full dimensional solution (v) is projected onto the u and w spaces using
the operators P and Q = I − P , respectively. The projection operator P is spanned by the
first m eigenvectors of the linear operator A = µ|~k|2, and the energy budget is defined as
the magnitude of each term in spectral space. The same analysis for the KSE in Sec. 3.1.2
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shows that in the resolved subspace, the nonlinear terms are considerably larger. While
approaching the unresolved subspace, the linear term gains more energy. The linear and
nonlinear terms are of the same order of magnitude in the unresolved subspace of the KSE.
Figure 13 shows the variation of the energy budget for the unresolved (left) and resolved
(right) dynamics. In the resolved subspace of the HIT, the nonlinear term is dominant.
However, unlike in the KSE, the linear operator is not important in the unresolved dynam-
ics. Even though the linear term becomes larger in the unresolved part, the nonlinear term
remains important for all modes. This behavior is consistent over different AIM resolutions
(different kthreshold values) until the truncated system becomes as descriptive as the AIM.

Figure 13: Energy budget of the governing equation for ng = 643, kthreshold = 8, m = 1153, left:

budget-study of the unresolved dynamics averaged over unresolved sub-space (|~k|> 8), linear term (Aw):
, nonlinear term (QF(u,w)): . Right: budget-study of the resolved dynamics for k ≤ kthreshold averaged

over all resolved modes, linear term (Au): , nonlinear term (PF(u,w)): .

3.2.3. Resolution of Approximate Inertial Manifold

For each case in Tab. 2, different values of kthreshold are considered such that number
of degrees of freedom for the largest approximate inertial manifold is around 30 percent
of the degrees of freedom of DNS. The magnitude of the velocity field in physical space is
shown in Fig. 14 for case IV (see Tab. 2) and kthreshold = 32. Figure 14 shows that the
AIM-augmented field captures the dominant spatial features in the flow, even though the
unresolved dynamics are overestimated.
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Figure 14: Magnitude of the velocity vector in a plane of the computational domain for ng = 2563, top left:
DNS, top right: AIM reconstructed field, bottom left: DNS field projected onto the unresolved subspace, and
bottom right: approximate unresolved dynamics by AIM. The last three fields are obtained for kthreshold =
32, m/ng = 0.0042.

Figures 15 and 16 show the effect of AIM resolution on accuracy. In all cases, increasing
the number of resolved modes increases accuracy. Figure 16 shows that the dynamics of the
sub-grid flow field are estimated with reasonable accuracy when using the information of
the resolved modes alone (10 percent of the DNS modes). Figure 17 shows the L2-norm of
the difference between AIM estimation of the unresolved scales (w) and the DNS solution
as a function of AIM resolution (m). The error decreases with increasing resolution; similar
to the results obtained with KSE, the rate of convergence is not constant. This behavior is
consistent for all cases with different DNS resolutions.
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(a) kthreshold = 32, m/ng = 0.0042 (b) kthreshold = 72, m/ng = 0.047

Figure 15: Effect of AIM resolution (m) on the estimation of dominant unresolved mode for ng = 2563, left:
kthreshold = 32, m/ng = 0.0042, and right: kthreshold = 72, m/ng = 0.047. DNS: , AIM: .

(a) ng = 2563, m/ng = 0.0042 (b) ng = 2563, m/ng = 0.047

Figure 16: Effect of AIM resolution (m) on the estimation of average unresolved dynamics. DNS: , AIM:
.
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Figure 17: Effect of AIM resolution (m) on L2-norm of the difference between exact and approximated
unresolved dynamics ||wDNS −wAIM ||2 . ng = 323: , ng = 643: , ng = 1283: , ng = 2563: .

3.2.4. Statistical accuracy

Similar to the analysis of KSE in Sec. 3.1.4, the AIM modeling is assessed in terms
of the statistics of the approximated flow field. The turbulent kinetic energy spectrum
reconstructed with AIM is compared to that of DNS in Fig. 18 (top left), showing that
the spectrum differs fundamentally from that of the KSE. The largest wavenumbers of the
unresolved scales are not approximated accurately, which can cause stability issues in a
modeling setup. This behavior can have two possible explanations which are discussed
below.

In the governing equations of HIT, the forcing term is linear but counteracts dissipation,
which is combined with other nonlinear terms in AIM formulation (Eq. 19).

d

dt
vi(~k, t) + µ|k|2vi(~k, t)−Bvi(~k, t) + ki

~f.~k

|k|2
− fi = 0

Avi = µ|k|2vi(~k, t)

F(v)i = −Bvi(~k, t) + ki
~f.~k

|k|2
− fi

(19)

Estimating the unresolved dynamics with only one iteration (j = 1) in Eq. 10 neglects
the forcing term. The impact of this formulation is not critical at higher wavenumbers
(|~k|>> kthreshold), where the dissipative linear operator (A ∝ |~k|2) becomes more dominant
compared to the constant linear forcing coefficient (B). Therefore, there is no energy over-
estimation at small scales. This may explain the discrepancy between AIM and DNS in the
unresolved modes close to the cut-off wave number. To examine this explanation, the fol-
lowing experiment is conducted: the influence of the forcing term is removed by performing
AIM on HIT and forcing only large scales to sustain turbulence. In this case, the forcing
coefficient B is zero for unresolved modes. Figure 18 (top right) shows that AIM perfor-
mance is improved when unresolved modes are not forced. However, there is still a small
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overestimation of energy close to the cut-off wave number.
Furthermore, this persistent error in the energy spectrum may be related to the first

order (one iteration, j = 1) approximation in Eq. 10. Approximating unresolved dynamics
with additional iterations could be used to test this conjecture. For HIT, Eq. 10 can be
written as

wj
~k = −(µ|k|2)−1QF(~u, ~wj−1). (20)

Considering Eq. 20 with j = 1, the nonlinear term only accounts for the interaction
between the resolved scales. Implementing a fixed-point iterative method for solving Eq. 20
will include interactions among all scales in the resolved and unresolved sub-spaces. Previous
studies of the two-dimensional Navier-Stokes equations have shown that the fixed-point
iteration has a unique bounded solution with a convergence rate exponentially proportional
to the smallest eigenvalue of the linear operator projected on to the unresolved subspace
(A|QH) [27].

The unresolved dynamics are approximated by a preconditioned nonlinear Newton method.
To ensure robustness, a successive over-relaxation (SOR) approach is used instead of the
Newton scheme [73]. Figure 18 (bottom) shows that higher order estimation with only three
iterations and SOR coefficient of 0.2 removes the energy build-up issue. This higher order
estimation is more effective closer to the cut-off wave number, which is in the inertial range
of the energy spectrum where the nonlinearity of energy cascade dominates the dynamics.
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Figure 18: Energy spectrum reconstruction for ng = 643, km = 8, m = 1153, top left: all scales are
uniformly forced and j = 1 in Eq. 20, top right: only resolved scales are forced and j = 1 in Eq. 20, and
bottom: all scales are uniformly forced with j = 3 in Eq. 20. Note that (m2/s2) denotes the energy units
and is not related to the AIM dimension, m. DNS: , AIM: .

3.2.5. Higher order statistics

In modeling the small-scale structures of the field from information at the large scales,
the vorticity vector (~ω), or its scalar equivalent, the enstrophy (z), is another important
quantity describing the energy cascade between these scales. Given in Eq. 21, enstrophy
measures dissipation of energy due to rotational or vortical motions, and its prediction leads
to identifying vortex structures and measuring momentum dissipation from rotation.

~ω =5×~ξ

z =
1

2
(~ω.~ω)

(21)

Figure 19 compares the time evolution of the total energy and enstrophy, achieved with
different AIM resolutions, with DNS. By increasing the number of resolved modes, the
AIM approximation becomes more accurate. For km = 32, m/ng = 0.0042, the difference
between total energy estimated by AIM and computed from DNS is negligible, but there is
a discernible error in total enstrophy prediction. This behavior shows that the dissipation
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of energy is not captured accurately at the smallest scales.

Figure 19: Effect of AIM-resolution on recovery of total energy and enstrophy for ng = 2563. The highest
resolution of AIM contains only 0.4 percent of DNS modes. DNS: , AIM with km = 16, m/ng =
5.33× 10−4: , AIM with km = 24, m/ng = 0.0018: , AIM with km = 32, m/ng = 0.0042: .

To further understand the method’s ability to capture the spatial structure of the tur-
bulent flow, the helicity field is also explored. Helicity is defined as the integral of the scalar
product of the vorticity and velocity vectors, and is a measure of their alignment in the flow:

H =

∫
V

~ξ · ~ωdV, (22)

where the integral is over the computational domain. Helicity is related to nonlinear vortex
stretching and impedes the cascade of energy between scales. While a higher helicity is
associated with the coherent and long-lasting structures, a lower helicity indicates higher
dissipation at small scales. Helicity density is defined as the dot product of the velocity and
vorticity vectors: h̄ = 〈~ξ · ~ω〉. Helicity is the integral of helicity density over the considered
volume. Here, helicity density is computed at different AIM resolutions. Figure 20 shows
that AIM with a sufficiently large dimension can capture helicity quite accurately. Helicity
can also be studied as a dimensionless local quantity named relative helicity density [74],

h =
~ξ · ~ω
|~ξ||~ω|

= cos(θ), (23)

which is defined as the cosine of the angle between velocity and vorticity vectors. In this
definition, the instantaneous total velocity and vorticity fields are used. Regions with h ≈ ±1
correspond to coherent large-scale structures. Previous studies suggest h2 = cos2 θ ≈ 0.333
for a flat relative helicity density probability distribution function (PDF), where h2 is the
average value of the PDF [74]. Larger or smaller values correspond to a greater or less helical
behavior, respectively. Figure 20 (right) compares the fluctuating relative helicity density
PDF approximated by AIM with DNS results. As shown, AIM modeling predicts more
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dissipative vortical motion and fewer sustained structures, both in the PDF distribution
and in the average helicity density of the field.

Figure 20: Prediction of helicity density by AIM. Left: convergence to DNS by increasing AIM resolution
for ng = 2563, 5.33×10−4 < m/ng < 0.0042; DNS: , AIM with km = 16: , AIM with km = 24: , AIM
with km = 32: . Note here that ms−2 denotes the helicity density units and is not related to the AIM
dimension, m. Right: The relative helicity density PDF for ng = 1283, kthreshold = 16. (h2DNS = 0.3639,

h2AIM = 0.3540); DNS: , AIM: .

Higher-order moments of velocity derivatives provide information about the small-scale
structure, including the transfer of energy between different scales and the inertial range.
For this purpose, the derivative skewness is defined as:

S = −
〈( ∂ξ1
∂x1

)3〉
〈( ∂ξ1
∂x1

)2〉3/2
, (24)

with ξ1 as the velocity component in x-direction, and 〈·〉 denotes spatial average. By this
definition, derivative skewness is positive, and it is related to vortex stretching and energy
cascade in the dissipation range. Prediction of such higher-order statistics of small-scale
quantities is essential for rare events consideration [1]. Figure 21 shows that AIM with
sufficiently large dimension can track exact derivative skewness with significant dimension
reduction (m/N = 0.03). Since the small scales are important for such derivative quantities,
these results show that AIM can recover a portion of this information (Fig. 21, right).
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Figure 21: Prediction of velocity-derivative skewness by AIM. Left: convergence with resolution for ng =
1283, 0.0018 < m/ng < 0.0334; DNS: , AIM with km = 12: , AIM with km = 16: , AIM with km = 32:

. Right: comparison of AIM with filtered DNS velocity field for ng = 643, km = 8,m/ng = 0.0044. DNS:
, AIM: , Projected DNS: .

4. Conclusions

In multiscale complex nonlinear systems, it is desired to predict the dynamical behavior
without resolving all of the scales within the system through direct numerical simulations.
In this context, the AIM methodology is a valuable alternative, naturally yielding a reduced-
order approach while capturing the dominant dynamics of the problem. The focus of this
study is to assess the suitability of the inertial manifold theory in the prediction of chaotic
dynamical systems. Here, an a priori analysis of the AIM approximation to two canonical
problems is studied: the one-dimensional KSE and HIT dictated by the three-dimensional
Navier-Stokes equations.

The proposed AIM approximation is examined using a wide range of parameters in terms
of the number of resolved scales (the dimension of the AIM) and the Reynolds or bifurcation
numbers (directly proportional to the dimension of the approximate inertial manifold). In
all configurations, for a sufficiently large dimension of the AIM, the dynamics of the unre-
solved variables are captured quite accurately. For the KSE, the statistics of the unresolved
scales in the neighborhood of the inertial manifold are captured more accurately than the
smaller scales farther away from the approximated IM. Smaller scales in the unresolved
dynamics are less responsive to the dynamics of the IM, and there is a time-delay in their
response. Similar behavior was observed for the HIT case. A higher order estimation of the
unresolved dynamics, where the interactions between the resolved and unresolved dynamics
are included, improves the AIM estimation of the unresolved dynamics.

The contribution of AIM to the unresolved dynamics can also be seen as a subgrid-scale
model. By increasing the dimension of AIM, the approximated system was found to converge
to the fully-resolved dynamics even in the HIT case, where the existence of an IM has not
yet been analytically shown. The convergence rate was found to vary over the range of AIM
dimension considered for each configuration of the system. This behavior was consistent
for the range of Reynolds numbers considered. Interestingly, the convergence rates between
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HIT and KSE are similar. Further studies at higher Reynolds number and more realistic
flow configurations, such as wall-bounded flows, should be pursued.
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