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A closure model for turbulent flows is developed based on a dynamical systems theory. An appropriately discretized
formulation of the governing equations is considered for this process. The key ingredient is an approximation of the
system’s attractor, where all the trajectories in phase space are confined. This approximate inertial manifold (AIM)
based approach provides a path to track trajectories of the system in a lower-dimensional subspace. Unlike conven-
tional coarse-graining approaches, the turbulent field is decomposed into resolved and unresolved dynamics using the
properties of the governing equations. The novelty of the approach relies on the reconstruction of the unresolved field
constrained by the governing equations. A posteriori tests for homogeneous isotropic turbulence and the Kuramoto-
Sivashinsky equation show promising results for considerable dimension reduction with strong convergence properties.
The proposed model outperforms the dynamic Smagorinsky model, and the computational overhead is competitive with
similar approaches.

I. INTRODUCTION

Large eddy simulation (LES) has become the pre-eminent
tool for simulating complex turbulent flows1–3. Although LES
resolves only the large scales, and small scales have to be ex-
plicitly modeled, its ability to capture turbulent mixing has
led to the increased predictive accuracy of reacting flows4.
However, the accuracy of LES is still dependent on small-
scale modeling, especially when the dominant physics occurs
at these scales3,5,6. The effect of small scales is treated using
two general approaches: explicit and implicit formulations. In
implicit LES, the physics of the small scales is represented by
the numerical dissipation imposed by the spatial discretization
of the governing equations assuming that the contribution of
the small scales is strictly dissipative7,8. In explicit model-
ing of the small scales contribution, spatial filters are applied
to the governing equations to remove scales smaller than a
prescribed value introducing additional subgrid-scale (SGS)
stresses and fluxes to be modeled. In this latter approach, the
SGS contribution is modeled either indirectly as an algebraic
function of the filtered field properties such as eddy-viscosity
models or directly by reconstruction of the sub-filter field9,10.
The focus here is on the explicitly-modeled LES formulation.

Eddy-viscosity models represent SGS stress tensor and
fluxes in terms of the filtered field variables. In particular, the
Smagorinsky model11 assumes that the SGS stress tensor is
proportional to the filtered strain rate, and the proportionality
factor, eddy viscosity, depends on filter width and a constant
model parameter. Despite its simplicity in implementation, in
complex flows where multiple flow regimes exist, the propor-
tionality coefficient needs to be tuned for each flow regime12.
To address this limitation, dynamic modeling approaches are
introduced which compute model parameters as a function of
time and space dynamically by assuming scale similarity for
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resolved and subgrid scales12–14. In this modeling ansatz, the
local equilibrium of turbulent kinetic energy plays a key role,
which implies a forward cascade of energy between resolved
and modeled scales. These models have been found to intro-
duce errors in near-wall and transitional regions14,15.

A different approach is to approximate the unfiltered field
from the information at the resolved scales without invoking
the universality of the subgrid field. These models are devel-
oped mostly on the scale similarity premise, i.e. the contribu-
tion of the small resolved scales to the large resolved scales
is similar to the contribution of the unresolved scales to the
small resolved scales. Scale similarity model (SSM)16,17 ap-
proximates the SGS stress tensor by applying a second spa-
tial filter like in the dynamic Smagorinsky model. There, the
proportionality constant is determined to reproduce the exact
average SGS kinetic energy. SSM gives the correct rate of
energy flux to the subgrid scales and can predict backscat-
ter reasonably. A generalized form of the scale similarity
model with repeated filtering is the approximate deconvolu-
tion model (ADM)9,10. In ADM, the unfiltered field is recov-
ered by applying the truncated series expansion of the inverse
filter operator to the filtered field, hence nonlinear terms in
the governing equation of the resolved scales are computed
directly. Unlike eddy viscosity models, SSM and ADM can-
not predict adequate SGS dissipation, and an additional re-
laxation regularization is required. Bardina et al. proposed a
mixed-model of scale-similarity and eddy-viscosity models to
account for the twofold SGS contribution: 1) energy transfer
from large scales and 2) dissipation of energy contained in the
SGS. This model has a superior performance in transitional
flows17. However, the ratio of each component of the SGS
model needs to be determined.

There exist other LES modeling approaches that do not rely
on traditional spatial filters for the separation of scales. Such
models use projection-based decomposition for scale separa-
tion. For instance, variational multi-scale LES18,19 uses a vari-
ational projection to decompose the range of scales in groups
of large resolved scales, small resolved scales, and unresolved
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scales. In this approach, the direct contribution of the SGS
physics is confined to the small resolved scales, and large
resolved scales are solved directly (i.e. without any model-
ing) but influenced indirectly by the subgrid-scale model due
to the inherent coupling of all scales18,20. Projection-based
scale separation provides a theoretical framework for model
reduction largely used in dynamical systems. For instance,
this approach has been successful in weather prediction21. A
fluid system described by a set of partial differential equa-
tions (PDEs) governing nv variables can be treated as a finite-
dimensional dynamical system after appropriate spatial dis-
cretization using ng grid points. In this setting, the dynamics
of the system reside in an N-dimensional state-space defined
by nv×ng degrees of freedom. The spatial and temporal evo-
lution of the turbulent flow can then be expressed as a tra-
jectory in this state-space. In many systems dominated by
coherent structures, the long-time behavior of the system is
known to be confined to a low-dimensional subspace of the
full N-dimensional state-space. All trajectories of the system
are attracted to this low-dimensional subset, which contains
the attractor of the system22–24. Constantin et al.23 showed
that the dimension of the attractor scales nonlinearly with the
Reynolds number of the flow. Direct estimations of this at-
tractor dimension for turbulent flows using the Kaplan-Yorke
conjecture25 showed that attractor dimensions are orders of
magnitude lower than the number of degrees of freedom re-
quired by DNS26,27.

In certain dissipative dynamical systems, an invariant sub-
set of the state-space attracts all trajectories of the system ex-
ponentially. The long-time dynamical behavior of the system
can be studied in this low-dimensional subspace, known as
the inertial manifold (IM)24. These manifolds, when they ex-
ist, contain the global attractor of the system. The dynamics of
the inertial manifold can be described by a finite-dimensional
system of ordinary differential equations (ODE), called the
inertial form, which completely describes the long-time dy-
namical behavior of the original infinite-dimensional system.
Current theorems can prove the existence of an inertial man-
ifold for certain dissipative systems24,28–30. However, these
theorems cannot explicitly determine the topology of the in-
ertial manifold, and they can only provide an upper bound
for its dimension. Inertial manifold theories require strong
restrictions, which are not satisfied in practical systems gov-
erned by the Navier-Stokes equations24,28. Consequently, an
approximation of the inertial manifold (AIM) is necessary to
describe the system in its inertial form. AIM can approximate
either the true inertial manifold29,31,32 or a neighborhood of
the global attractor of the system when the existence of the IM
is unknown33–37. The main assumption is that the dynamics
in the complement space, between the AIM and the full state-
space, equilibrate to the dynamics on the AIM. In other words,
the motion in the complement space responds instantaneously
to changes in the trajectory on the AIM. While this assump-
tion is justified by the theoretical studies discussed above, its
validity needs to be scrutinized more rigorously for different
systems.

Recently, the use of AIM for turbulence simulations has
been pursued37,38. In one study37, a priori analyses of

the AIM formulation for the one-dimensional Kuramato-
Sivashinsky equation (KSE) and the three-dimensional
Navier-Stokes equations were carried out. It was demon-
strated that the AIM approach provides a viable pathway for
modeling the unresolved scales. In a related study,38, the AIM
approach was used to model non-premixed turbulent combus-
tion. In this particular case, the chemical reactions are known
to occupy a lower-dimensional manifold. The proposed AIM
correctly identified this manifold, without being prescribed a
priori. The a priori study examines the suitability of the in-
ertial manifold theory in modeling turbulent flows. The pro-
posed AIM is investigated for determining the dimension of
the inertial manifold or the attractor of the system and recon-
struction of the unresolved variables based on the information
of the exact resolved field37. Given these prior results, the fo-
cus here is on a posteriori validation, where the AIM approach
is used to obtain the small-scale contribution to the evolution
of the large resolved scales and close the turbulence model-
ing. As opposed to the a priori studies, this work examines
the accuracy of the modeled trajectory of the system in the
approximate inertial manifold. Moreover, a computationally-
efficient approach is provided and possible simplifications to
accelerate the model will be studied. The inertial manifold
theory and AIM methodology have been explained in Sec. II,
followed by results in Sec. III. Finally, concluding remarks
and future paths are discussed in Sec. IV.

II. MATHEMATICAL FORMULATION OF AIM

In this section, a reduced-order description of dynamical
systems based on the IM theory is discussed. Any fluid sys-
tem governed by a set of partial differential equations can be
cast as a dynamical system after spatial discretization such
that the discrete vector of variables of interest, e.g. momen-
tum or energy in case of non-reacting flows, is given by the set
v = {v1,v2, · · · ,vnv}, and the governing differential equations
are written as

dv
dt

+A v+F (v) = 0, v(t = 0) = v0, (1)

where A is a discretized linear operator, which is taken to be
positive and self-adjoint. Thus, the set of eigenvectors of A
forms an orthonormal eigenbasis for the Hilbert space H , in
which the dynamics reside. The nonlinear term, F induces
a computational challenge as it couples all scales of the solu-
tion.

The goal is to describe the dynamical features of the flow
in a lower-dimensional manifold described by the dynamics of
a subset of the variables of interest. An orthogonal projection
operator P is defined to decompose the vector of variables (v),
into the resolved u and the unresolved w subsets. Applying
the projection operator to the discrete governing equations, the
evolution equations for the resolved and unresolved fields can
be obtained as
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du
dt

+A u+PF (v) = 0, u(t = 0) = Pv0, (2)

dw
dt

+A w+QF (v) = 0, w(t = 0) = Qv0, (3)

where Q = I−P is the complement operator of P, and it maps
its operand to the null-space of the projection operator, P.
Here the projection P is taken to be onto the space formed
by the first m eigenfunctions of the linear operator A .

The main challenge in describing the large-scale dynam-
ics only by using the resolved scales is the projected nonlin-
ear term PF (v), which cannot be computed directly from u.
This is the typical closure challenge in turbulence modeling.
The goal is to estimate w given only information of u and
compute the projected nonlinear term. The approach here is
to leverage the unresolved-scales governing equation by uti-
lizing the IM approximation: the dynamics of u directly de-
termine the dynamics of w. In other words, the components
of w adjust to changes in u instantaneously. With the approx-
imation dw/dt = 039, Eq. 3 results in

w =−A −1QF (u,w). (4)

The above nonlinear equation can be solved by an itera-
tive method to obtain a converged solution for w. With
this approximation of the unresolved dynamics, the nonlinear
term PF (u,w), and the governing equations of the resolved
modes u are closed.

Before any spatial discretization, the unresolved subspace
is infinite-dimensional. After spatial discretization, the un-
resolved subspace is the subspace between approximated IM
and the entire state space. To develop a low-dimensional AIM,
the unresolved subspace becomes considerably higher dimen-
sional such that solving Eq. 4 can be adversely expensive
in terms of cost and memory. This limitation can be lifted
by considering only part of the unresolved dynamics that re-
sides in a close neighborhood of the resolved subspace. Such
simplification is in agreement with the exponential tracking
property of dissipative dynamical systems29, and the resultant
lower grid resolution reduces the cost of the approach. As
aforementioned, the projection operator is positive and self-
adjoint, with an ascending set of eigenvalues. Moving far-
ther from the AIM, the timescales of the unresolved dynamics
becomes smaller. By removing these exponentially decaying
dynamics, the stiffness of the problem reduces and a larger
time step can be used. In the a priori analysis37, this model-
ing ansatz has been evaluated for the KSE and homogeneous
isotropic turbulence (HIT). Direct numerical simulations are

used to validate the accuracy of the IM approximation and
study the convergence properties of the AIM approach. The
purpose of this a posteriori study is to assess the AIM clo-
sure as a reduced-order model for the prediction of turbulent
flows. Here, only the resolved scales will be evolved, and at
each time step, the small scales will be reconstructed using the
AIM approach.
III. AIM-BASED ROM FOR CANONICAL PROBLEMS

In this section, the system’s dynamics are tracked in a low-
dimensional AIM for the KSE and HIT. By tracking the dy-
namics of the system in a lower-dimensional space, conver-
gence of the AIM model to the full-dimensional solution is
shown for the KSE which possesses an IM. A computationally
efficient framework of AIM is investigated for HIT because it
is a more realistic problem of interest. A correction model is
proposed and assessed in the forecast of statistical properties,
dynamics of spatial statistics, and energy transfer between the
resolved and unresolved subsets. Finally, the reduced-order
model performances are compared against other prevalent tur-
bulence models.

A. Kuramoto-Sivashinsky equation-based spatio-temporal
chaos

The KSE is known to have a low-dimensional IM and has
traditionally served as a surrogate problem for studying IM
properties40,41. The evolution of the KSE in spectral space is
governed by

d
dt

vk +(µq4
k−q2

k)vk +
iqk

2

l=+∞

∑
l=−∞

vlvk−l = 0. (5)

where t is time, qk =
2πk

L , k ∈ Z, L is spatial period and µ is
viscosity.

Equation 5 can be arranged as Eq. 1 with the linear opera-
tor A = µq4

k . The KSE has two linear operators, but only the
diffusion operator (µq4

k) satisfies properties required by the
theory of inertial manifolds (i.e., linear, unbounded, and self-
adjoint). The full-dimensional system can be solved by trun-
cating the discretized KSE at a sufficiently large wavenumber
called nF . Here, the goal is to predict the dynamics of the sys-
tem by evolving only the first m Fourier coefficients, such that
m� nF , while the nonlinear contribution of the higher modes
is modeled by the AIM approach.

After decomposition by projections P and Q, dynamics of
the system are predicted by time evolution of the resolved
variables alone, u = (v−m/2, ...,vm/2), and the unresolved
variables (w) are reconstructed by the AIM graph (Eq.4),

w j
k = µ

−1q−4
k

(
q2

kw j−1
k − i

2
qk ∑

1≤ |l|≤ nF/2,
1≤ |k− l|≤ nF/2

(u,w j−1)l(u,w j−1)k−l

)
, (6)
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to close the governing equation of the resolved variables
(Eq. 2). Here, j denotes the iteration index in the approxi-
mation, and in the following analysis j = 1, unless otherwise
mentioned. The accuracy and convergence of Eq. 6 were as-
sessed a priori in Ref.37. The focus here is to examine the
accuracy of AIM-based ROM in the prediction of the resolved
dynamics.

1. Numerical results

The KSE exhibits spatiotemporal chaos, where infinitesi-
mal perturbations can lead to exponential energy accumula-
tion. The quadratic nonlinear term transports energy from
the low linearly unstable modes to the high modes with rapid
exponential decay. Therefore, insufficient spatial resolution
cannot capture energy dissipation and leads to numerical in-
stability. The chaotic dynamics of the system are controlled

by a bifurcation parameter defined as Re = L
2π
√

ν
. To iden-

tify a range of chaotic structures, viscosity is kept constant
at µ = 0.001, and the length of the domain is varied to have
158 ≤ Re ≤ 1000. As the range of scales increases with the
Re number, the number of Fourier modes needed to resolve
the dynamics also changes. At each Re number, there is a
minimum resolution required for the stability of the solution
(Nmin), while a considerably higher resolution is needed to
capture the spatiotemporal chaos of the KSE NDNS

37. The ob-
jective of the proposed reduced-order model is to evolve the
dynamics of the system on an AIM spanned by m� Nmin.
When discussing the AIM dimension (m in Sec. II), the min-
imum resolution will be used as a reference. The initial
condition of the dynamical system in physical space is cho-
sen to be g(x) = sin(x)(1 + cos(x)) for the reference DNS
simulation, and for the AIM prediction, the projected ini-
tial condition Pg(x) is used. For both full-dimensional and
reduced-order simulations, the exponential time difference
fourth-order Runge-Kutta method (ETDRK4)42,43 with stan-
dard 3/2 de-aliasing is implemented.

FIG. 1: Solution of the KSE for Re = 316.23. Left: DNS with NDNS = 4096 and right: AIM with m = 1024. Only part of the
computational domain is shown.

Figure 1 (left) shows an example solution of the full-
dimensional system for the Reynolds number 316.23 using
NDNS = 4096 Fourier modes. At t > 0.15, the dynamics en-
ter the chaotic regime, where a truncated system with 1024
Fourier modes for the same Reynolds number becomes un-
stable and blows up. However, including the AIM subgrid
model in the evolution of the first 1024 Fourier modes stabi-
lizes the solution and predicts transition to turbulence accu-
rately (Fig. 1, right).

The accuracy of the model prediction depends on the size
of the AIM, m, and the accuracy of the approximation of the
unresolved dynamics (Eq. 6). The KSE is known to have a
relatively low-dimensional inertial manifold that scales with
Re36,40. Here, the model accuracy is assessed for a range of
resolutions, m, and Fig. 2 shows the root mean square of the

error between AIM prediction and the full-dimensional sys-
tem solution in physical space computed in the chaotic regime
(t > 0.15), over a range of Re numbers and AIM dimensions.
The AIM resolution is normalized by the integer part of the
Reynolds number [Re], which is the number of linearly unsta-
ble modes. The AIM prediction converges uniformly to the
exact solution when the approximate IM is large enough to
contain all of the unstable dynamics. These results suggest
that strong convergence properties can be obtained for reso-
lutions exceeding this point, which is in agreement with prior
works36,40.
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FIG. 2: L2-norm of the spatiotemporal error of AIM predic-
tion in physical space; Re = 158.11: , Re = 316.23: ,
Re = 569.21: , Re = 1011.93: . Vertical dashed line marks
m = [Re].

In the AIM model, the ground assumption is that the un-
resolved variables respond instantly to the resolved dynam-
ics, i.e. dw/dt = 0. The validity of this assumption and the
rate of convergence to the fixed-point solution of Eq. 6 has
been assessed in the a priori study37. The optimum number

of iterations depends on the Re number and the resolution of
AIM (m). Seeking the fixed-point solution can be computa-
tionally expensive, and its feasibility should be judged based
on the improved accuracy of the resolved dynamics predic-
tion. Figure 3 (left) shows the energy spectrum of Fourier
modes in the resolved and unresolved subspaces. The mod-
eled resolved spectrum generally follows the DNS spectrum,
but there are discrepancies at the largest resolved scales. The
reconstructed unresolved spectrum can be improved by imple-
menting more iterations in Eq. 6. The first-order approxima-
tion ( j = 1) considers only the nonlinear interaction between
the resolved scales for the transfer of energy to the unresolved
scales. This approximation is improved by seeking the fixed-
point solution of Eq. 6 with more iterations to reconstruct the
unresolved modes. However, unlike the unresolved dynamics,
this higher-order approximation does not improve the resolved
dynamics spectrum significantly. To assess this higher-order
approximation more precisely, the probability density func-
tion (PDF) of the predicted resolved modes is compared for
various closures obtained by different numbers of iterations
( j) in Eq. 6. Figure 3 (right) compares the PDF of the real part
of Fourier mode at the cut-off wavenumber for Re = 158.11
and m = 256 predicted by AIM and DNS. It is shown that a
higher-order approximation of the unresolved dynamics gives
a better prediction of the resolved scales throughout the dis-
tribution. More details on convergence properties of Eq. 6 are
discussed in37.

FIG. 3: Left: Energy spectrum (E(k) = |vk|2) of the KSE at Re = 316.23; DNS: , AIM with m = 512 and j = 1 in Eq.6: ,
AIM with m = 512 and j = 4 in Eq.6: . Right: PDF of real part of um/2 predicted by AIM and DNS at Re = 158.11, m = 256;
DNS: , AIM with j = 1 in Eq. 6: , AIM with j = 3 in Eq. 6: .

B. Homogeneous isotropic turbulence

In this section, the evolution of a turbulent flow in a do-
main of 2π × 2π × 2π m with periodic boundary conditions
is modeled by AIM. The flow field is governed by the three-

dimensional incompressible Navier-Stokes equations

∂ξi

∂ t
+ξ j

∂ξi

∂x j
=− 1

ρ

∂ p
∂ξi

+µ
∂

∂x j
(

∂ξi

∂x j
)+Bξi

∂ξi

∂xi
= 0,

(7)
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where ξi is the velocity component in the ith direction, p is
the hydrodynamic pressure, µ is the kinematic viscosity and
ρ is the density. Large-scale motions are forced by a constant
linear forcing coefficient B to compensate for the viscous dis-
sipation and reach statistical stationarity44,45. By expanding
the solution of Eq. 7 in Fourier space: ξi = ∑~k vi(~k, t)e

~k.~x, a
Galerkin projection of the governing equations leads to a sys-
tem of ODEs that govern the evolution of the Fourier coeffi-
cients vi(~k, t),

d
dt

vi(~k, t)+µ|k|2vi(~k, t)−B(~k)vi(~k, t)+~k
~f .~k
|k|2
− fi = 0

fi =−(
∂̂ ξiξ j

∂x j
)~k.

(8)

Equation 8 can be rearranged as Eq. 1 using the linear op-
erator A = µ|k|2, with F (v) containing all other terms. A
sharp spectral projection operator with a cut-off wavenumber
kc separates the resolved and unresolved subspaces such that
all the modes with wavenumbers

√
k2

x + k2
y + k2

z ≤ kc are in-
cluded in the resolved space. The number of modes satisfying
this requirement is the dimension of AIM, m. With the IM as-
sumption, the unresolved variables with wavenumber |~k|> kc
can be approximated as

w j
~k
=−(µ|k|2)−1QF (u,w j−1)~k, (9)

where u is the vector of the resolved variables. It can be
shown that the velocity field reconstructed by the AIM sat-
isfies continuity37. With this approximation of the unresolved
dynamics, the nonlinear term (PF (u,w)) can be computed
directly. Hence, the governing equation of the resolved dy-
namics (Eq. 2) is closed, and the resolved space dynamics can
be evolved in time independently.

Unlike the KSE, the rate of convergence in Eq. 9 is slower
than quadratic37, and more iterations are needed to approx-
imate higher modes in the unresolved subspace which can
make the AIM approach inefficient. Removing the small-
est unresolved scales from the computational grid makes the
AIM approach more efficient in two ways: 1) by reducing the
size of the domain, the cost of computing the nonlinear term
F (u,w) decreases; 2) small-scales require higher-order ap-
proximation of Eq. 9, and by removing them, fewer iterations
are needed to approximate all unresolved modes. Therefore,
the unresolved subspace can be decomposed into unresolved
but represented scales approximated by Eq. 9 and unresolved
and unrepresented scales with wavenumbers larger than the
Nyquist wavenumber (kng ) of the computational grid. The de-
composition of the computational domain is shown in Fig. 4.
AIM dimension refers to m which determines the degrees of
freedom of the resolved subspace, and AIM resolution is ng
of AIM simulation including both resolved and represented
unresolved subspaces. The effect of the unresolved and un-
represented scales on the dynamics of the system needs to be
modeled.

FIG. 4: Representation of the resolved and unresolved sub-
spaces in the wavenumber space. Circle with radius km en-
closes the resolved modes. Light gray shaded area denotes
the unresolved and unrepresented modes, and the dark gray
area represents unresolved but represented modes. kmax is the
highest wavenumber in DNS calculations, and kN is the high-
est wavenumber in AIM-ROM calculations. The dashed red
rectangle denotes the computational domain of AIM-ROM.

1. A modified approximate inertial manifold

The a priori analysis has demonstrated that approximat-
ing only the larger unresolved scales reconstructs the inter-
action between resolved and unresolved dynamics with suf-
ficient accuracy. However, it cannot provide adequate dis-
sipation in the system37. This behavior is similar to other
approaches which reconstruct the unresolved dynamics10,17.
Here, a dissipative modeling component similar to the eddy-
viscosity approach is added to address this shortcoming. Most
eddy-viscosity subfilter models in LES assume that the SGS
contribution to the filtered field is dissipative and thus cannot
predict the transfer of energy to the large scales (backscat-
ter). An improvement has been made by adding additional
non-dissipative terms to these models such as in the mixed
model and the scale-similarity model1,17. Dynamic subfil-
ter modeling can also account for backscatter in transitional
flows if locally negative eddy-viscosity is allowed13. On the
contrary, AIM recovers the nonlinear interaction between the
resolved and unresolved scales by reconstructing the subfil-
ter field without assuming a forward cascade of energy. The
recovered unresolved energy spectrum can be used to deter-
mine the rate of backward/forward transfer of energy between
the resolved and unresolved subsets. The energy stored in the
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unresolved scales either transfers backward to the resolved
scales or transfers forward to the smaller unresolved scales
where it finally gets dissipated by molecular viscosity. If
only a subset of the unresolved space is reconstructed by the
AIM approach, energy of the unrepresented scales should be
drained from the system. The energy of unrepresented scales
can be approximated by the forward scatter of energy of the
reconstructed scales as this energy will eventually transfer
to smaller unrepresented scales. Therefore, energy virtually
transferred to the unresolved and unrepresented scales is dis-
sipated. First, the AIM approximation is studied to determine
whether backward/forward energy transfer is captured accu-
rately. The subgrid-scale dissipation εSGS, is defined as

εSGS = τi jSi j, (10)

where τi j = P(viv j) − uiu j is the SGS stress, and Si j =

( ∂ui
∂x j

+
∂u j
∂xi

) is the resolved-scales strain rate. When the un-
resolved scales remove energy from the resolved ones (for-
ward scatter), εSGS is negative; and if SGS transports energy
to the resolved scales (backscatter), SGS dissipation is posi-
tive. Therefore, forward and backward energy transfer can be
defined as46,

ε− = 0.5(εSGS−|εSGS|)
ε+ = 0.5(εSGS + |εSGS|).

(11)

The energy from the forward scatter will eventually dissi-
pate at the smallest scales. If the smallest unresolved scales
are discarded, this energy needs to be removed to avoid en-
ergy accumulation beyond the cut-off wavenumber. The en-
ergy spectrum reconstructed by AIM can provide the rate of
energy dissipation at the unresolved scales. A dynamic spa-
tially varying viscosity can be determined to dissipate the for-
ward cascade of energy beyond the cut-off wavenumber

−|ε̂−|= 2µT (k)|k|2E(k), (12)

where ε̂− is the Fourier transfer of forward cascade of energy,
and E(k) is the energy spectrum that represents the contribu-
tion to the turbulent kinetic energy 1

2 〈vivi〉 from all modes with
|~k| in the range k ≤ |~k|< k+ dk. Here, the energy spectrum
is computed for the resolved and reconstructed unresolved
modes. With this turbulent viscosity, the effective viscosity
at the unresolved scales is µe f f (~k) = µ +µT (~k), and the unre-
solved dynamics are approximated by

w j+1
~k

=−(µ j
e f f |k|

2)−1QF (u,w j)~k. (13)

It should be noted that µe f f changes at each iteration. For
j = 1, µe f f = µ because the unresolved subspace is not re-
constructed yet. Algorithm 1 summarizes the modified AIM-
ROM approach advancing from time step t = tn to tn+1. By
implementing more iterations (increasing l in Alg. 1), the
modified viscosity is updated with the reconstructed unre-
solved scales. Backward and forward scatter of energy occur
at all scales, and turbulent viscosity obtained from Eq. 12 can
be defined at both resolved and unresolved scales. Three dif-

ferent approaches have been considered: 1) modifying viscos-
ity only at the resolved subspace similar to the optimal LES
model47, 2) modifying viscosity at both resolved and unre-
solved subspaces, and 3) modifying viscosity only at the un-
resolved subspace. Here, the effective viscosity is modified
only at the represented unresolved scales as the forward en-
ergy transfer from the resolved scales will eventually dissipate
at the represented unresolved scales. Hence, modifying effec-
tive viscosity at the resolved scales based on ε− introduces
too much dissipation in the system. It should be mentioned
that while modifying the effective viscosity at the unresolved
scales changes the linear operator, which separation of scales
is based on, it is aligned with the inertial manifold theory re-
quirements as it increases the spectral gap of the linear op-
erator of the Navier-Stokes equations. As unresolved scales
become more dissipative, the separation of scales between re-
solved and unresolved scales is more prominent. In turn, the
assumption that unresolved scales equilibrate to the AIM dy-
namics is more justified.

Algorithm 1 Algorithm of the modified AIM-based
reduced-order model

1: At t = tn:
2: µT (~k) = 0
3: w0 = 0
4: for j = 1 : l do
5: µe f f = µ +µT

6: w j
~k
=−(µe f f |k|2)−1QF (u,w j−1)~k

7: Compute E(k)
8: Compute ε− by Eq. 11
9: Compute µT (k) by Eq. 12

10: end for
11: Compute PF (un,wn)
12: Advance resolved scales by Eq. 2 to t = tn+1

2. Numerical results

Direct numerical simulations of HIT at two spatial resolu-
tions are used to investigate the accuracy of the AIM predic-
tion. For DNS and AIM-ROM simulations, a pseudo-spectral
method with dealiasing is used for the non-linear term. Ex-
act time integration is used for the linear viscous term, and
second-order Runge Kutta (RK2) is used for the other terms.
Table I shows the numerical setup for DNS cases. The Taylor
microscale Reynolds number Reλ and the Kolmogorov length
scale η (∆x is grid spacing in each direction) are monitored
over the initialization time to make sure the turbulent field
is fully developed and resolved. The forcing of the veloc-
ity field has been limited to the large energy-containing scales
(B(~k) = 0, for~k > k f ), and the flow statistics are monitored for
several eddy turnover times (τ) to ensure the forcing method
does not lead to instability and energy pile-up at small scales.
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Grid Resolution (Ng) µ Reλ η/∆x B k f DKY

2563 0.05 91.54 0.55 5 8 6.9257×104

5123 0.01 290.27 0.23 8 8 6.4165×106

TABLE I: Numerical setup for HIT

Current theories cannot prove the existence of an inertial
manifold for the Navier-Stokes equations24. However, in sys-
tems dominated by coherent structures, the dynamics of the
system are confined to a low-dimensional attractor48–50. For
instance, the attractor dimension is lower than the number of
degrees of freedom required by DNS for turbulent flows27,51.
More specifically, in forced HIT, it is shown that the attractor
dimension scales with ( L

η
)2.827 where L is the domain length.

For the turbulent fields considered here, this estimated attrac-
tor dimension (DKY ) is used as a reference for the assessment
of AIM accuracy over a range of AIM dimensions. It should
be mentioned that when an inertial manifold exists, it contains
the attractor of the system. Hence, the AIM should be larger
than the attractor of the system regardless of the existence of
an inertial manifold.

To evaluate the proposed AIM model against common tur-
bulence modeling approaches in terms of accuracy and ef-
ficiency, large-eddy simulations with dynamic Smagorinsky
subfilter model11 have been conducted. For the sake of com-
parison, the sharp spectral filter is used for the LES to make re-
solved subspace of AIM and LES almost identical. However,
the resulting variable separations are not identical as the re-
solved subspace of AIM in the wavenumber space is a sphere
with radius kc, while the same cut-off wavenumber in LES re-
solves all the wavenumbers enclosed in a cube of side length
2kc. Following the conventional LES practices, the subfilter
field representation is implicit such that the subfilter scales are
not represented on the computational grid, and their contribu-
tion is modeled by the dynamic eddy viscosity. On the other
hand, AIM reconstructs the subfilter field either entirely or just
a subspace of it. Therefore, for the same cut-off wavenumber,
the computational grid is larger in AIM compared to the LES.

First, AIM approximation (Eq. 9) has been examined to
see if the reconstructed turbulent field captures forward and
backward scatter of energy between resolved and unresolved
scales accurately. Figure 5 shows the rate of energy transfer
over the range of scales for 2563 field with kc = 16. As ex-
pected, subgrid-scale energy transfer is dominated closer to
the cut-off wavenumber and at larger unresolved scales. This
behavior confirms that there is no need to recover all of the
unresolved subspace, and approximating only the largest un-
resolved scales is sufficient to capture subgrid-scale effects
on resolved dynamics. It can be seen that AIM captures en-
ergy transfer in both directions. However, it overestimates the
backward scatter at the unresolved scales. This may be due
to the limited approximation of the unresolved scales, and by
implementing more iterations in Eq. 9 and recovering smaller
unresolved scales, this approximation can improve37.

FIG. 5: Spectrum of backward ( ) and forward ( ) SGS
dissipation rate for ng = 2563 and kc = 16. DNS: solid lines,
AIM: dashed lines.

FIG. 6: Top: subgrid-scale dissipation normalized by total re-
solved dissipation, middle: SGS backscatter normalized by
total resolved dissipation, and bottom: fraction of points with
backscatter of the energy in the computational domain. DNS
of 2563: , AIM modeling for 2563 DNS case: .
DNS of 5123: , AIM modeling for 5123 DNS case:

. Horizontal axis is resolved subspace dimension nor-
malized by the full-dimensional system dimension (m/ng).

Statistics describing the energy transfer between resolved
and unresolved subspaces are provided in Fig. 6, where the
(SGS) dissipation (top) and energy backscatter of the subfil-
ter field (middle) as a function of the normalized AIM di-
mension (m/ng) are shown. Here, the SGS dissipation and
backscatter of energy to the resolved scales are computed
from turbulence fields modeled by the AIM over a range of
resolutions (m). Also, DNS fields are filtered, and the exact
values of these quantities are computed at different filtering
widths for comparison with AIM. At each cut-off wavenum-
ber, the SGS dissipation (〈εSGS〉), and the energy backscatter
(〈ε+〉) are normalized by the total resolved dissipation (〈ε〉).
It can be seen that by increasing the filter width, i.e. by using
a lower AIM resolution, the amount of SGS dissipation in-
creases. Accordingly, the amount of backscatter of energy to
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the resolved scales increases, because the cut-off wavenumber
is farther away from the rapidly dissipative scales, and a larger
part of the inertial range is in the unresolved subspace. The
number of points in the physical domain experiencing energy
backscatter is almost independent of the cut-off wavenumber
(Fig. 6, bottom), which shows that even when the amount of
energy backscatter is not considerable compared to the total
dissipation, subgrid energy backscatter occurs between the
smallest scales at the dissipation range. AIM predicts the

same characteristics but more locations in the domain expe-
rience backscatter. This is not surprising as the AIM approach
(Eq. 9) models nonlinear interaction between the scales but
does not have a completely dissipative component. Overall,
these results show that AIM can capture energy transfer be-
tween resolved and unresolved subspaces accurately, and this
property can be used to implement a dynamic dissipative com-
ponent to account for the unresolved and unrepresented scales
(Eq. 13).

FIG. 7: Time evolution of resolved turbulent kinetic energy (left) and dissipation rate (right) of 2563 field with kc = 16. DNS:
, AIM: , modified AIM: , LES: .

FIG. 8: Time evolution of resolved turbulent kinetic energy (left) and total dissipation rate (right) of 2563 field with kc = 16.
DNS: , modified AIM with Ng = 2563: , modified AIM with Ng = 1283: , modified AIM with Ng = 643: , LES: .

Turbulent statistics predicted by original and modified AIM
models are compared against the DNS calculation in Fig. 7,
where turbulent kinetic energy is computed based on the re-
solved field and total dissipation rate is computed based on the
effective viscosity in each of the modeling approaches includ-
ing LES. It can be observed that the original AIM approx-
imation alone cannot predict enough dissipation in the sys-
tem, but adding a dissipative component solves this problem,

and dissipation is almost accurately predicted by the modi-
fied AIM model. This improvement in AIM prediction is
not dominant in the resolved turbulent kinetic energy as the
modified viscosity removes energy only from the unresolved
scales. These statistics show that AIM models outperform the
dynamic Smagorinsky approach. However, it should be noted
that here all of the unresolved subspace is approximated by
AIM (Eqs. 9 and 13). Decomposing the unresolved subspace
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into represented and unrepresented subsets provides a closer
comparison to LES.

To assess the modified AIM approach in modeling the ef-
fect of unresolved and unrepresented scales, only part of the
unresolved subspace is kept in the computational domain and
approximated by AIM (Eq. 13). Figure 8 shows the statisti-
cal properties for 2563 field and kc = 16 where the unresolved
subspace dimension in AIM is reduced by discarding higher
wavenumbers and using a lower grid resolution. For the
full-dimensional system of this case, the highest wavenum-
ber in the computations is 120.7, and the full-dimensional un-
resolved subspace contains all modes with 16 < |~k|< 120.7.
By reducing the AIM resolution to Ng = 643 and Ng = 1283,
the highest unresolved modes considered are roughly 30 and
60, respectively. While reducing the unresolved subspace di-
mension does not affect the turbulent kinetic energy of the
resolved subspace substantially, it underestimated total dissi-

pation in the system considerably. In the lowest-resolution
AIM for kc = 16, the largest unresolved wavenumber recon-
structed by AIM is 30.2, which gives |~k|/kc < 2. Figure 5
shows that a considerable amount of forward cascade of en-
ergy is discarded at this AIM resolution. In this case, the di-
mension of AIM, m, is only 0.75 of the estimated dimension
of the system’s attractor (DKY in table I). By increasing the
AIM dimension, approximation of the unresolved dynamics
and AIM prediction improve considerably. Considering ap-
proximate inertial manifolds for the 5123 case with two dif-
ferent dimensions obtained from kc = 64 and kc = 128 re-
sults in m/DKY ≈ 0.5 and m/DKY ≈ 4. Figure 9 compares
the time evolution of turbulent kinetic energy and dissipation
rate predicted by AIM against the DNS data. By increasing
the AIM dimension, both approximations have improved es-
pecially earlier in the prediction time.

FIG. 9: Time evolution of resolved turbulent kinetic energy (left) and total dissipation rate (right) of 5123 field with kc = 64 (blue
lines) and kc = 128 (black lines). Solid lines are obtained from DNS, and dashed lines are predicted by modified AIM model.
Since total dissipation does not depend on kc, only one line is shown here for dissipation evolution of the DNS field (right).

FIG. 10: Left: resolved kinetic energy spectrum of forced 5123 field for kc = 64, DNS: , AIM: , modified AIM: LES:
. Right: resolved kinetic energy spectrum of decaying 5123 field for kc = 64, DNS: , modified AIM: , LES: .
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Resolved energy spectrum of the 5123 field predicted by
DNS, AIM and LES models for projection wavenumber kc =
64 is compared in Fig. 10 (left). At this resolution, the AIM
dimension, m, is almost half of the estimated dimension of
the system’s attractor (DKY in table I). The energy spectrum
predicted by AIM models is more accurate than the dynamic
Smagorinsky model. The original AIM model overestimates
the energy of the smallest resolved scales. This issue has been
alleviated in the modified AIM model. The spectrum pre-
dicted by the dynamic Smagorinsky model is quite different
from the exact spectrum which can be due to the limited forc-
ing of the large scales. The dynamic Smagorinsky approach
relies on the scale-similarity between larger resolved scales,
smaller resolved scales and unresolved scales. Limited forc-
ing at the larger resolved scales can falsely impose a higher
rate of energy transfer at the smaller scales and lead to over-
shooting of energy at the smallest resolved scales. To test this
explanation, the same initial condition for the 5123 field in ta-
ble I is used for decaying HIT where there is no forcing. Fig-

ure 10 (right) shows the energy spectrum predicted by DNS,
modified AIM and LES at t/τ ≈ 1, and it can be seen that
the LES spectrum follows the exact spectrum even though it
is more dissipative at the smallest resolved scales. This be-
havior of LES and AIM models is consistent over the range of
cut-off wavenumbers considered. However, the prediction of
the dynamic Smagorinsky model improves when the cut-off
wavenumber is high enough to be in the dissipation range of
the energy spectrum.

Finally, contours of the velocity field predicted by DNS,
modified AIM and LES models are compared in Fig. 11. Here,
the decaying case of 5123 field has been chosen for compari-
son. The decaying turbulent field allows for a fixed time step
for all simulations. Velocity fields are compared at t/τ0 ≈ 1.
Both modeled fields look quite similar to the DNS field, but
it can be seen that AIM preserves more details of the smaller
structures. It should be mentioned that in decaying HIT, as
turbulent energy dissipates, the size of the attractor changes
and shrinks. Hence the approximation of AIM becomes more
accurate for longer prediction times.

FIG. 11: Magnitude of the velocity vector in a plane of the computational domain for decaying 5123 field, left: DNS, middle:
modified AIM with kc = 64 and m/DKY ≈ 0.5, and right: LES with Ng = 1283. The LES field is interpolated into a higher
resolution for demonstration purposes.

The computational cost of AIM and LES models are com-
pared over a range of cut-off wavenumbers in Fig. 12, where
computational costs of AIM and LES models are normalized
by the cost of the corresponding DNS. The comparison is
based on the reduced grid resolution of the models (N/Ng),
where N is the grid resolution of AIM or LES simulations, and
Ng is the grid resolution of the corresponding DNS. It is shown
that AIM is more expensive than the constant Smagorinsky
model, but it is more efficient compared to the dynamic LES
modeling. It should be mentioned that for the same grid res-
olution of AIM and LES, the resolved space in AIM is lower-
dimensional than LES, and it is not possible to compare the
computational cost of these models at the same accuracy.

FIG. 12: Reduced computational cost of DNS of Ng =

2563 with AIM: , dynamic Smagorinsky: , and constant
Smagorinsky: models. Reduced cost of DNS of Ng =

5123 with AIM: , dynamic Smagorinsky: , and constant
Smagorinsky: models.
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IV. CONCLUSIONS

A reduced-order model of turbulent flows has been devel-
oped based on the inertial manifold (IM) theory. Casting the
discretized governing equations as a dynamical system pro-
vides a path for the decomposition of variables without re-
lying on traditional scale-separation methods, such as spatial
filtering. Here, governing equations of the system have been
leveraged to define resolved variables and recover unresolved
variables to directly compute the nonlinear term. The pro-
posed model has been examined on two canonical flows: one-
dimensional KSE and three-dimensional HIT.

The existence of an inertial manifold is not yet proven
for turbulent flows. Nevertheless, the construction of an
AIM for the Navier-Stokes equations shows promising results.
The AIM-based reduction requires that the dimension of the
reduced-order model should be higher than the dimension of
the attractor. Since exactly obtaining the attractor dimension
is not feasible for most practical problems, the proposed AIM
is examined over a range of dimensions to understand the va-
lidity of this approximation. Convergence properties of the
AIM conform with direct estimations of the size of the at-
tractor for these systems proving the proposed AIM can ap-
proximate the dynamics of the attractor. Studying the attrac-
tor of chaotic systems provides new paths for the development
of reduced-order models to predict and control complex sys-
tems. Direct methods for finding the topology of the attractor
are prohibitively expensive, but strong convergence proper-
ties observed for approximate inertial manifolds over a range
of problems considered in this study show the potential of this
approach in locating the attractor of more practical systems.
The next steps will involve extensions to non-homogeneous
systems such as wall-bounded flows, for which the AIM ap-
proach should be cast in physical space52.

For a given resolved field, AIM reconstructs a single real-
ization of the unresolved dynamics. This contribution of an
AIM to the resolved dynamics can also be seen as a subgrid-
scale model. In all configurations, for a sufficiently large di-
mension of the AIM, the unresolved dynamics were found to
respond to the dynamics of the AIM instantaneously. How-
ever, smaller scales in the unresolved dynamics are less re-
sponsive to the dynamics of the IM, and there is a time delay
in their response. A higher-order estimation of the unresolved
dynamics, where the interactions between the resolved and
unresolved dynamics are included, improves the AIM estima-
tion of the unresolved dynamics. The rate of convergence is
controlled by the nonlinear interaction between resolved and
unresolved scales. However, turbulence is broadband, and
the approximation of unresolved dynamics farther from the
approximate inertial manifold can be cost-prohibitive. It is
shown that reconstruction of the entire unresolved subspace is
not necessary, and recovering the unresolved dynamics in the
vicinity of the AIM captures the nonlinear interaction suffi-
ciently. The information recovered by AIM is used to model
the effect of the dynamics far from the AIM. The modified
AIM approach is robust, efficient, and more accurate in the
prediction of statistical properties of the system. The mod-
ified model shows the capacity of the AIM approach for an

adaptive modeling framework.
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